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Preface

Causal inference is one of the core areas of research in modern data science that allows researchers to

determine whether a specific intervention or treatment has an effect on an outcome. In its most basic

form, causal inference is concerned with understanding the “cause and effect” relationship between

variables. This requires going beyond correlation to understand whether changing one variable leads

to a change in another. The gold standard for inferring causality is the randomized controlled trial,

which randomly assigns subjects to a treatment or control group and compares outcomes. While

randomized controlled trials provide us with data to do causal inference, the subsequent statistical

analysis often relies on a key assumption known as the Stable Unit Treatment Value Assumption

(SUTVA). This assumption states that the treatment of one unit (or individual) does not affect the

outcome of another unit. However, in many real-world situations, this assumption does not hold,

leading to what is called interference or a violation of SUTVA. Interference can occur in various

contexts such as social networks, where the treatment of one person can influence the outcomes of

others, or in marketplace, where treatment of one entity can impact other entities of same type.

Understanding and handling interference is a critical and complex aspect of causal inference, and it

necessitates more advanced methods to correctly estimate causal effects.

This dissertation offers new methodologies and theoretical results to address key issues in causal

inference with interference. In Chapter 2, we develop inferential results for causal effect estimators in

panel experiments under interference. We turn our attention to the complications brought about by

network interference in Chapter 3, where we introduce novel estimation methods for causal effects.

Given the difficulties interference presents to inference, the ability to detect interference becomes

pivotal in determining the most suitable statistical analysis approach. To this end, Chapter 4 tackles

the problem of detecting interference in online controlled experiments with increasing allocation.

iv



Acknowledgments

The completion of this PhD thesis would not have been possible without the collective support,

guidance, and encouragement of many individuals to whom I owe my deepest gratitude.

Firstly, I would like to express my deepest gratitude to my advisors, Guido Imbens and Johan

Ugander. Their guidance, wisdom, and unwavering support have been instrumental in shaping my

academic journey. Guido’s influence in the field of causal inference is unparalleled. My understanding

of causal inference has been significantly shaped by studying his textbook, reading his papers and

taking his courses. He stands as a role model to me. I recall predicting to my parents three

years ago that Guido would one day win the Nobel prize. It fills me with immense pride and joy

to see this prediction come to reality, and I am deeply honored to be his student. On the other

hand, Johan is, in my opinion, the best advisor every PhD student could ever have. Johan kindly

stepped in as my co-advisor, providing me with invaluable support when Guillaume left Stanford.

He is willing to devote considerable time to his students. His knowledge spans diverse areas like

computational social science, social networks, causal inference, and applied mathematics, making

him an invaluable resource for references and discussions. His support has been unwavering, in both

my academic pursuits and personal life.

I would also like to thank my committee members, Art Owen, Jonathan Taylor, and Tatsunori

Hashimoto for serving on my dissertation and defense committees. I am grateful for their invaluable

input, critical feedback, and challenging questions that have significantly enriched this work. Art

also carefully read the draft version of this thesis and sent me very detailed suggestions as well as a

list of typos that I were not aware of beforehand.

Next I would like to express my sincere gratitude to Guillaume Basse and Iavor Bojinov, who,

despite not holding official advisory roles, have significantly contributed to my academic journey.

Guillaume, my co-advisor prior to his departure from Stanford, is an exceptional individual and a

brilliant statistician. Although our collaboration only spanned a one and a half years, the knowledge

and insights I gained from him were invaluable. Iav, my collaborator and mentor on the panel

experiment project featured in this thesis, deserves special mention. During the challenging period

when I was in search of another co-advisor, Iavor’s support was instrumental. He also provided

invaluable advice as I navigated the process of securing internships. I am deeply appreciative of his

v



mentorship and guidance.

The decision to go to graduate school would not have been realized without the profound impact

of my exceptional teachers and mentors during my college years. I am particularly indebted to Jinho

Baik, Alexander Barvinok, Stephen DeBacker, Tailen Hsing, Stilian Stoev, Yuekai Sun, Roman

Vershynin, Gongjun Xu and Ji Zhu. The knowledge I learned from their classes, along with their

insightful guidance, were instrumental in shaping and nurturing my interests in mathematics and

statistics.

I am truly fortunate to have shared this journey with an amazing cohort - Ben, Dan, Han, Hui,

Kevin, Marius, Samyak, Souvik and Yuchen. The cohort dinners we had together, the classes we

took, and our numerous discussions have made this journey truly memorable. To the remarkable

members of U-lab, specifically Amel, Izzy, Jenny, Jordan, Martin, Samir, Serina and Yuchen, I owe

a debt of gratitude for providing a supportive and stimulating environment. The past two years of

attending group meetings with them have consistently been a source of joy and fulfillment.

My sincere appreciation extends to my friends at Sequoia. I am particularly thankful to Shuangn-

ing, Shuangping, Daren, Lingfu, Yuchen, Kangjie, Zhihan and Mi for providing me with steadfast

support and being a constant source of joy and comfort throughout this journey. Our shared laughter

and countless conversations have lightened the burden of the challenges I faced. With Shuangning,

Shuangping, Daren, Lingfu, Yuchen, and Kangjie, we have spent lots of nights playing board games

together, and we have also made many great memories on tennis courts. Thank you for being a

part of this journey, and more importantly, for being true friends. To Xiaowei, even though he left

us three years ago, his optimism and kindness have left an indelible mark on my heart. I also want

to extend my thanks to my friends outside Sequoia, especially those I met at ACSSS, who have

made my past three years even more special. In particular, I have been involved in the planning

and production of the annual Stanford Lunar New Year Gala since 2021. This has been my most

cherished memory during my time at ACSSS.

I am also grateful to the wonderful staff in our department, whose efforts make Sequoia a great

place for all PhD students. I particularly want to thank Susie for her invaluable assistance and

support. This amazing journey began with an offer email from Susie five years ago, an event that

marked the inception of an incredible academic experience.

I owe a deep debt of gratitude to my family, whose constant love and support have been my

foundation throughout this journey. To my parents and my grandparents, thank you for instilling

in me the values of perseverance, curiosity, and humility. Your sacrifices and unyielding belief in me

have been the driving force behind my every endeavor. Even when the path was tough, your words

of encouragement and wisdom have been the compass that guided me through. You have been my

first teachers and biggest cheerleaders, and for that, I am eternally grateful. My brother Han, who

shares the same academic path with me since kindergarten. The bond we share as siblings and fellow

PhD students has been a source of immeasurable comfort. Observing you tackle similar challenges,

vi



celebrate the same milestones, and share this unique academic journey has been an invaluable source

of inspiration and mutual support. Your companionship and understanding have truly enriched my

doctoral journey. I also want to express my heartfelt gratitude to my girlfriend Rita. Your love,

patience, and enduring faith in me have shone a light during the most challenging times. Thank you

for being my confidante, my source of joy, and my steady source of support. I am truly fortunate to

have you by my side.

vii



Contents

Preface iv

Acknowledgments v

1 Introduction 1

2 Population Interference in Panel Experiments 5

2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Potential outcomes and exposure mappings . . . . . . . . . . . . . . . . . . . 5

2.1.3 Causal effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.4 Estimation and inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Panel experiments with population interference and no carryover effects . . . . . . . 11

2.2.1 Average temporal exposure contrast . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Shrinkage estimator under stability assumption . . . . . . . . . . . . . . . . . 15

2.3 Panel experiments with population interference and carryover effects . . . . . . . . . 18

2.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Simulations for central limit theorems . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 Estimation under the stability assumption . . . . . . . . . . . . . . . . . . . . 22

2.5 Two real data examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 Rational cooperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.2 Facebook network semi-synthetic experiment . . . . . . . . . . . . . . . . . . 26

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7.1 Standard population interference . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7.2 Proofs and additional discussions . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7.3 k−steps convex estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.7.4 Additional simulation results for estimation under stability assumption . . . 52

2.7.5 General Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

viii



3 Model-Based Regression Adjustment with Model-Free Covariates for Network

Interference 56

3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Model-free covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Inference with model-free covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.2 Selection properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.3 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.4 Confidence interval via a block bootstrap . . . . . . . . . . . . . . . . . . . . 65

3.4 Simulation experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4.1 Estimation of the GATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4.2 Outcome models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4.4 Confidence interval for the GATE . . . . . . . . . . . . . . . . . . . . . . . . 76

3.5 Real data example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.7.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.7.2 Supplementary Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4 Detecting Interference in Online Controlled Experiments with Increasing Allo-

cation 86

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.1.1 Motivations and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 Testing for interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.1 Testing under general assumptions . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.2 Testing with a time fixed effect model . . . . . . . . . . . . . . . . . . . . . . 94

4.3.3 Usage of graphs of experimental units . . . . . . . . . . . . . . . . . . . . . . 98

4.3.4 Aggregating p-values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3.5 Extension to three or more experiments . . . . . . . . . . . . . . . . . . . . . 100

4.4 Validity of the testing procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.5.1 Under general assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5.2 Time fixed effect model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

ix



4.8 Appendix: simulation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.8.1 Under general assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.8.2 Time fixed effect model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

x



List of Tables

2.1 Root mean squared errors (RMSE) for τ̂TE
20 , τ̂ c20 with k = 2 and τ̂ c20 with k = 5 . . . 23

2.2 Coverage of two approximate confidence intervals for τTE
t with k = 2 . . . . . . . . . 24

2.3 Payoff structure in the experiment conducted by Andreoni and Samuelson [2006]. The

choice C denotes “cooperate” and the choice D “defect.” . . . . . . . . . . . . . . . . 25

2.4 Estimates for temporal exposure contrasts from the panel experiment in Andreoni

and Samuelson [2006] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 RMSE for different estimators of temporal exposure contrast at T = 20 . . . . . . . 27

2.6 Trade-off between design and interference . . . . . . . . . . . . . . . . . . . . . . . . 31

2.7 Root mean squared errors (RMSE) for τ̂TE
20 , τ̂ c20 with k = 2 and τ̂ c20 with k = 5 . . . 52

2.8 Lengths of two approximate confidence intervals for τTE
t with k = 2 . . . . . . . . . 53

3.1 Parameters of simple linear interference outcome model ((3.8) and (3.9)) used in

simulation experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2 Parameters of truncated linear-in-means outcome model used in simulation experiments. 73

3.3 RMSE of estimators of the GATE assuming linear interference (simple linear inter-

ference and truncated linear-in-means) outcome models. . . . . . . . . . . . . . . . . 74

3.4 Empirical bias of estimators of the GATE assuming linear interference (simple linear

interference and truncated linear-in-means) outcome models. . . . . . . . . . . . . . 74

3.5 RMSE and empirical bias of estimators of the GATE assuming a nonlinear interference

(Appendix 3.7.2) outcome model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.6 Additional parameters of simple linear interference model ((3.8) and (3.9)) used in

simulation experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.7 Coverage of different bootstrap 90% confidence intervals for the GATE with linear

interference (simple linear interference and truncated linear-in-means) outcome models. 77

3.8 Average length of 90% confidence intervals for the GATE with linear interference

(simple linear interference and truncated linear-in-means) outcome models. . . . . . 77

3.9 Coverage of block bootstrap 90% confidence intervals for the GATE using different

graph clustering algorithms with Model 6 as the true outcome model. . . . . . . . . 78

xi



3.10 Estimates and standard errors of different estimators for the global average treatment

effect on insurance adoption Cai et al. [2015]. . . . . . . . . . . . . . . . . . . . . . . 79

xii



List of Figures

2.1 Histogram, n = 1000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Q-Q normal plot, n = 1000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Histogram, T = 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Histogram, T = 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Root mean squared errors (RMSE) for τ̂TE
20 and τ̂ c . . . . . . . . . . . . . . . . . . . 53

4.1 An A/B test implemented by LinkedIn with increasing allocation. A and B are

different outcome metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 An illustration of Algorithm 8. After selecting the set of focal units and auxiliary

units, we randomly permute rows of the treatment matrix and compute test statistics

and p-values based on the permuted data. . . . . . . . . . . . . . . . . . . . . . . . 93

4.3 An illustration of Algorithm 9. Algorithm 9 permutes the outcomes across experi-

ments, whereas Algorithm 8 permutes the treatments across units. . . . . . . . . . . 98

4.4 An illustration of Algorithm 11. Pairs of units are matched and the outcomes of

paired units are permuted together across experiments. . . . . . . . . . . . . . . . . 103

4.5 Power of Algorithms 7, 8 and 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.6 Power of Algorithms 10 and 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.7 Example experiment: Test statistics and p-values from the permutation test. Results

on two metrics are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

xiii



Chapter 1

Introduction

Causal inference is of great interest in the realm of data science as it aids researchers and practitioners

in making informed decisions, designing effective policies, and unveiling the complex dynamics of

various systems. In this thesis, we discuss estimation and testing methods for causal inference with

interference. In this introductory chapter, we introduce the problems we will be solving in the

following chapters and outline our contributions.

When researchers estimate causal effects from randomized experiments, they almost always make

assumptions that restrict the number of counterfactual outcomes to simplify the subsequent infer-

ence. In standard experiments, where units are randomly assigned to either a treatment or control,

researchers commonly assume that one unit’s assignment does not affect another unit’s response;

this is usually referred to as no interference [Cox, 1958, Chapter 2]. In panel experiments, where

units are exposed to different interventions over time [Bojinov et al., 2021b], in addition to no

interference, researchers regularly assume that the observed outcomes were not impacted by past

assignments; this is often called the no carryover assumption [Cox, 1958, Chapter 13]. Although

these two assumptions are useful, there are numerous empirical examples where they are violated.

This mismatch between practical applications and theoretical assumptions has catalyzed a grow-

ing amount of literature dedicated to studying relaxations of these stringent conditions for either

standard or panel experiments, but not both.

In standard experiments without evoking the no interference assumption, each unit’s outcome

depends on the assignments received by all other experimental units. Allowing for such arbitrary

population interference1 makes causal inference challenging [Basse and Airoldi, 2018]. In practice,

researchers look for an underlying structure that limits the scope of interference. For example, when

studying electoral participation during a special election in 2009 in Chicago, Sinclair et al. [2012]

assumed that interference occurred within-household but not across; more broadly, this type of

interference has been found in many other applications, including education (Hong and Raudenbush

1We use the term population interference to emphasize that the interference occurred across units.

1



CHAPTER 1. INTRODUCTION 2

[2006]; Rosenbaum [2007]), economics (Sobel [2006a]; Manski [2013]) and public health (Halloran and

Struchiner [1995]). Inference in this setting is challenging because interference increases the number

of potential outcomes and makes observations dependent. Aronow and Samii [2017] introduce a

general framework for studying causal inference with interference: they introduce the concept of

exposure mapping, define useful estimands, and construct asymptotically valid confidence intervals

based on the Horvitz-Thompson estimator.

The literature on panel experiments has similarly shifted towards relaxing the no carryover effects

assumption that precludes outcomes from being impacted by past assignments. For example, in the

most extreme case, Bojinov and Shephard [2019] allows for arbitrary carryover effects when studying

whether algorithms or humans are better at executing large financial orders; more generally, these

types of relaxations have also been studied in economics [Angrist and Kuersteiner, 2011, Rambachan

and Shephard, 2019], epidemiology [Robins, 1986, Robins et al., 1999], public health [Boruvka et al.,

2018], and political science [Blackwell and Glynn, 2018]. Similarly to relaxing the no interference

assumption, removing the no carryover assumption enables researchers to develop and explore a

richer class of causal estimands that capture both the contemporaneous and delayed causal effects

[Bojinov and Shephard, 2019]. The latter is particularly important for technology companies seeking

to understand the long-term impact of their interventions [Basse et al., 2019, Hohnhold et al., 2015].

Similarly to the population interference setting, researchers use the analogous Horvitz-Thompson

type estimator estimators to analyze experiments with carryover effects.

An apparent gap in the literature is an understanding of whether the possibility of running a

panel experiment alleviates the challenges posed by population interference or makes them worse.

This is particularly important for researchers wishing to run field experiments for two reasons.

First, it is often the case the researchers are constrained on the maximal number of experimental

units they can recruit, for instance, because of costs or limits in the total population. Second,

population interference often leads to increased uncertainty that reduces only by increasing the

sample size. Panel experiments can alleviate these as it is often cheaper to change an experimental

unit’s treatment than to recruit more subjects, and uncertainty tends to decrease as the sample

size and the number of time period increase. However, what happens when there is population

interference and carryover effects is unclear.

We address this gap in Chapter 2 where we introduce a unifying framework for studying panel ex-

periments with population interference. We begin by focusing on panel experiments with population

interference but no carryover effects (Section 2.2). Here, we provide asymptotically valid confidence

intervals for estimands defined at specific time periods and estimands that average contrasts over

multiple time periods. We also introduce a novel class of assumptions enabling us to leverage past

data to improve inference at a given time. Together, our results show that using panel experiments

when there is population interference allows us to achieve valid inference under much weaker con-

ditions on the population interference and even drop all restrictions for large time horizons. These
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results should be particularly encouraging for researchers wishing to run field experiments when

the number of experimental subjects is constrained, as is often the case in Economics (for example,

Andreoni and Samuelson [2006]) and Management Science (for example, Bojinov et al. [2021a]).

We then tackle the most general setting featuring both population and temporal interference

(Section 2.3). Under additional assumptions, we derive a general central limit theorem, which fails

to provide the same clear benefit because of the data complexity caused by carryover effects. We

also state asymptotic results for a restricted type of mixed interference that generalizes the usual

stratified interference to panel experiments and provides a blueprint for deriving additional results in

specific contexts. Here we show a clear benefit that incorporating a temporal dimension allows us to

relax the main restriction on the maximal cluster size to obtain valid inference. For researchers, these

results are slightly less encouraging but, nevertheless, provide an essential next step in understanding

how to leverage panel experiments in real-world settings.

Finally, Section 2.1 details our setup by introducing the potential outcomes framework, our causal

estimands and corresponding estimators, and the randomization-based framework that we leverage

for all our results. We conclude the chapter with simulations (Section 2.4), empirical applications

(Section 2.5), and a discussion (Section 2.6). The Appendix contains a detailed discussion of inference

under population interference for standard experiments, all proofs, and additional simulations.

We then shift our focus to causal effect estimation under network interference. In practice,

interference typically arises from interactions among experimental units [Hong and Raudenbush,

2006, Cai et al., 2015]. It presents a significant challenge in product experiments by tech companies,

especially those involving social or market interactions. Various methods have been developed to

manage interference by leveraging the structure of user interactions Eckles et al. [2017], Pouget-

Abadie et al. [2019a], Karrer et al. [2021]. In the no-interference literature, regression adjustment

has proven to be effective in estimating the average treatment effect, both in theory Lin [2013] and

practice Deng et al. [2013]. Chin Chin [2019] considers regression adjustment under interference

when assuming a linear model for the outcomes with covariates derived from the social network and

the assignment vector, and estimate the parameters of the model from the experimental data. This

linear model assumption is not uncommon in the interference literature and has been utilized in

experiment design Harshaw et al. [2022] and interference detection Pouget-Abadie et al. [2019a].

In Chapter 3, we propose a method to estimate the global average treatment effect using regres-

sion adjustment, without assuming the true set of features as per Chin’s approach. We generate

adjustment features in a model-free manner, based on observed experimental data. We first presents

the problem setup and motivates our method through an examination of the classic linear-in-means

model in econometrics. Subsequently, we outline our procedure to generate model-free covariates

from observed experimental data. We then detail how to estimate and infer the global average

treatment effect using these model-free covariates. Our work culminates in simulations, empirical

applications, and a discussion of our findings.
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The technology industry has adopted online randomized controlled experiments, also known

as A/B testing, to guide product development and make business decisions [Kohavi et al., 2013,

2020]. In the past decade, firms have developed a dynamic phase release framework in which a

new treatment (such as a new product feature) is gradually released to an increasing number of

units in the target population through a sequence of randomized experiments [Kohavi et al., 2020].

Companies including Google, Microsoft, LinkedIn, and Meta all developed in-house platforms that

implement this framework at-scale [Tang et al., 2010, Kohavi et al., 2013, Bakshy et al., 2014, Xu

et al., 2015]. Contrary to the sophisticated engineering design of such platforms, the strategy to

analyze A/B testing is relatively simple—often, only the most powerful experiment in the sequence

is used to provide a summary of the treatment effect, using tools from classical causal inference

assuming independence among test units [Imbens and Rubin, 2015].

In scenarios such as experimenting in a social network setting or in a bipartite online marketplace,

interference among units may exist. Thus a natural question is whether such interference harms the

validity of simple inference procedures. Specific designs have been proposed to test or correct for

the interference effects in different applications [Saveski et al., 2017, Eckles et al., 2017, Ugander

et al., 2013, Pouget-Abadie et al., 2019b, Johari et al., 2022]. However, these designs are limited to

specific applications and often require significant engineering work to implement in parallel to the

existing A/B testing infrastructure in most companies. Even when such designs are implemented,

their complex nature often results in lower throughput and can slow down the decision process.

In Chapter 4, we introduce a widely applicable procedure to test for interference in generic online

experiments. The proposed method utilizes data from multiple experiments in the sequence. It can

be implemented on top of an existing A/B testing platform with a separate flow and does not require

a priori the knowledge of the underlying interference mechanism. Once implemented, this test can

be run as a standard screening for any A/B test running on the platform. If the test suggests that

no interference exists, the experimenter can proceed with classical causal inference analysis with

confidence; if the test suggests that some form of interference does exist, the experimenter may need

to redesign experiments in a more delicate way. At the platform level, such screening could provide

valuable and timely feedback on the choice of designs and help experimenters update development

roadmaps accordingly.



Chapter 2

Population Interference in Panel

Experiments

2.1 Setup

2.1.1 Assignments

Consider a randomized experiment occurring over T periods, on a finite population of n experimental

units. At each time step t ∈ {1, · · · , T}, unit i ∈ {1, · · · , n} can be assigned to treatment (Wi,t = 1)

or control (Wi,t = 0); extensions to non-binary treatments are straightforward. We denote by

Wi,1:t = (Wi,1,Wi,2, · · · ,Wi,t) the assignment path up to time t for unit i, W1:n,t the assignment

vector for all n units at time step t and W1:n,1:t ∈ {0, 1}n×t the assignment matrix. Hence, for

each i and t, Wi,1:t is a vector of length t, W1:n,t is a vector of length n and W1:n,1:t is a matrix of

dimension n× t.

We define an assignment mechanism (or design) to be the probability distribution of the assign-

ment matrix P(W1:n,1:T ). Following much of the literature on analyzing complex experiments, we

adopt the randomization-based approach to inference, in which the assignment mechanism is the

only source of randomness (see Kempthorne [1955] and Abadie et al. [2020] for extended discussions).

Throughout, we use lower cases w with the appropriate subscript for realizations of the assignment

matrix W .

2.1.2 Potential outcomes and exposure mappings

The goal of causal inference is to study how an intervention impacts an outcome of interest. Following

the potential outcomes formulation, for panel experiments without any assumptions, each unit i at

time t has 2nT potential outcomes corresponding to the total number of distinct realizations of the

5
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assignment matrix, denoted by Yi,t(w1:n,1:T ). For simplicity, we assume that the potential outcomes

are one dimensional, although it is straightforward to relaxing this assumption.

In randomized experiments, where we control the assignment mechanism, the outcomes at time

t are not impacted by future assignments that have yet to be revealed to the units [Bojinov and

Shephard, 2019]. This assumption drastically reduces the total number of potential outcomes1 and

will be implicitly made throughout this chapter. Potential outcomes depend on assignments in

various ways. We now introduce two concepts that we will constantly refer to hereafter.

Definition 1 (No carryover effect and population interference). We say that there is no carryover

effect if and only if

Yi,t(w1:n,1:t) = Yi,t(w
′

1:n,1:t) whenever w1:n,t = w
′

1:n,t.

And we say that there is no population interference if and only if

Yi,t(w1:n,1:t) = Yi,t(w
′

1:n,1:t) whenever wi,1:t = w
′

i,1:t.

Unfortunately, inference is still impossible without any assumptions on the population inter-

ference structure [Basse and Airoldi, 2018]. One way forward is to assume that the outcomes

of unit i depend only on the treatments assigned to a subset of the population. This intuition

extends more generally to the assertion that the outcome of unit i at time t depends on a low-

dimensional representation of w1:n,1:t. Formally, for each unique i, t pair we define the exposure

mapping fi,t : {0, 1}n×t → ∆, where ∆ is the set of possible exposures2 [Aronow and Samii, 2017].

Defining exposure mappings in this flexible manner allows us to unify and transparently consider

restrictions on the population interference and the duration of the carryover effect. Throughout

this chapter, we restrict our focus to properly specified time-invariant exposure mappings, which are

formally defined below.

Assumption 2 (Properly specified time-invariant exposure mapping). The exposure mappings are

properly specified if, for all pairs i ∈ {1, · · · , n} and t ∈ {1, · · · , T}, and any two assignment matrices

w1:n,1:t and w
′

1:n,1:t,

Yi,t(w1:n,1:t) = Yi,t(w
′

1:n,1:t) whenever

fi,t(w1:n,1:t) = fi,t(w
′

1:n,1:t).

For p ∈ {1, · · · , T}, we say the exposure mappings are p-time-invariant if for any t, t
′ ∈ {p, · · · , T}

1The assumption, known as non-anticipating potential outcomes [Bojinov and Shephard, 2019], can be violated if
experimental units are told what their future assignments will be and modify their present behavior as a result. For
instance, this could occur for shoppers who expect to receive a considerable discount on a subsequent day and may
curtail their spending until they receive the discount.

2To make exposure mappings useful, we assume the cardinality of ∆ is (substantially) smaller than n× t.
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and any unit i,

fi,t(w1:n,1:t) = fi,t′ (w1:n,1:t′ ) whenever

w1:n,t−p+1:t = w1:n,t′−p+1:t′ .

The exposure mappings are time-invariant if the exposure mappings are p-time-invariant for some

p ∈ {1, · · · , T}. We say the exposure mappings are properly specified time-invariant exposure

mappings if they are both properly specified and time-invariant.

Properly specified exposure mappings can be thought of as defining “effective treatments”, al-

lowing us to write

Yi,t(w1:n,1:t) = Yi,t(fi,t(w1:n,1:t)) = Yi,t(hi,t)

where hi,t = fi,t(w1:n,1:t) ∈ ∆. Time-invariant exposure mappings constrain the relationship between

experimental units to be invariant over time. Specifically, it does not allow the exposure mappings

to change across time. For example, if at time t = 1, the outcomes depend on the fraction of treated

neighbors in the graph then it cannot be the case that at time t = 2 the outcomes now depend on

the number of treated neighbors in the graph. We will see why such an invariance assumption is

necessary in the next section when we define causal effects. Of course, the validity of Assumption 2

depends on the exact definition of the exposure mapping and should be informed by the empirical

context.

Throughout this chapter, we consider a special class of exposure mappings that restrict the

outcomes of unit i to depend only on the assignments of a predefined subset of units that we refer

to as i’s neighborhood and index by Ni. For example, for units connected through a social network,

Ni indexes the set of nodes connected to i by an edge; for units organized households, Ni indexes

the set of units that live in the same household as i; and for units located in space, Ni indexes the

set of units who are at most a certain distance away from unit i.

Definition 3 (Locally Effective Assignments (LEA)). We say the assignments and exposure mappings

are locally effective if the exposure mappings are p-time-invariant for some p ∈ {1, · · · , T} and

fi,t(w1:n,1:t) = fi,t(wNi,t−p+1:t),

with the convention that wNi,t−p+1:t = wNi,1:t for t− p+ 1 ≤ 0.

Although LEA imposes further structure, it still provides a great deal of flexibility as it incorpo-

rates all notions of traditional population interference and temporal carryover effects as special cases.

For example, fixing p = 1 makes the exposure values depend only on current assignments, which is

equivalent to usual population interference. On the other hand, fixing Ni = {i} is equivalent to the

no interference assumption imposed on panel experiments in Bojinov et al. [2021b]. Of course, these

special cases are interesting and extensively studied, but our general formulation’s real benefit is to
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consider scenarios where there is both population interference and carryover effects.

Example 1 (Example of Locally Effective Assignments). We consider an example where the exposure

values depend on past assignments. In particular, let

fi,t(w1:n,1:t) = (wi,t−1, wi,t, ui,t−1, ui,t)

where ui,t−1 = 1
|Ni|

∑
j∈Ni

wj,t−1 and ui,t =
1

|Ni|
∑

j∈Ni
wj,t; we use |A| to denote the cardinality of

the set A. Hence, one unit’s assignment and the fraction of treated neighbors at previous time step

matter as well. This is a special case of LEA with p = 2. In this example, the exposure mappings

are 2-time-invariant: for t, t
′ ≥ 2, if w1:n,(t−1):t = w1:n,(t′−1):t′ then fi,t(w1:n,1:t) = fi,t′ (w1:n,1:t′ ).

We conclude this section by pointing out that though the LEA(p) assumption does not assume

any model of the outcomes, it does have one limitation. Namely, it rules out long-range dependency

of past assignments and also population interference beyond one’s neighborhood. The long-range de-

pendency in time is not uncommon in econometrics literature [Judson and Owen, 1999, Wooldridge,

2010]. For example, if we consider the following parametric model [Wooldridge, 2010]:

Yi,t = ρYi,t−1 + βWi,t + ϵi,t, where ρ ∈ (−1, 1) and E[ϵi,t|Yi,1, · · · , Yi,t,Wi,1, · · · ,Wi,t] = 0.

Such a specification leads to infinite-long dependency of past assignments on the current outcomes.

Population interference beyond local interference has also been studied a lot in econometrics litera-

ture [Manski, 1993, Bramoullé et al., 2009, Leung, 2022]. In summary, LEA(p) brings in the flexibility

of doing inference without making modeling assumption but loses the flexibility of accounting for

long-range time and population dependency.

2.1.3 Causal effects

Causal effects, within the potential outcomes framework, are defined as contrasts of each unit’s

potential outcomes under alternate assignments [Imbens and Rubin, 2015]. As the number of possible

contrasts grows exponentially with the number of distinct potential outcomes, we focus on two

important special cases.

The first—which is well-defined regardless of the interference structure—compares the difference

in the potential outcomes across two extreme scenarios: assigning every unit to treatment, W1:n,1:t =

11:n,1:t, as opposed to control, W1:n,1:t = 01:n,1:t.

Definition 4 (Total effect at time t). The total effect at time t is

τTE
t =

1

n

n∑
i=1

Yi,t(11:n,1:t)−
1

n

n∑
i=1

Yi,t(01:n,1:t).

Our total effect at time t corresponds to the Global Average Treatment Effect sometimes used
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in single time experiments [Ugander and Yin, 2020]. In the absence of interference and carryover

effects, the total effect at time t reduces to the usual average treatment effect at time t.

The second—which requires Assumption 2—provides a much richer class of causal effects with

important practical applications. The TEC estimand is the generalization of the usual exposure

contrast estimands [Aronow and Samii, 2017] to the panel experiment setting. Hereafter, the letter

k will always represent values in ∆.

Definition 5 (Temporal exposure contrast (TEC)). For any time step t and exposure values k, k
′ ∈ ∆,

we define the temporal exposure contrast between k and k
′
to be

τk,k
′

t =
1

n

n∑
i=1

Yi,t(k)−
1

n

n∑
i=1

Yi,t(k
′
)

Notice that if there exist carryover effects then TEC may not be well-defined for the first few

time steps. In this case, we may assume that all units are in the control group prior to the first time

step in the panel experiment.

In panel experiments, researchers are often less interested in the idiosyncratic effects at each

point in time and instead focus on the temporal average causal effect that captures the intervention’s

average impact across both time and units [Bojinov and Shephard, 2019, Bojinov et al., 2021b, 2022].

For example, Bojinov and Shephard [2019] are not interested in the relative difference between an

algorithm or a human executing a large financial order on an arbitrary day of the experiment but are

instead interested in the average difference across multiple trades on the same market. Technology

companies like DoorDash [DoorDash, 2018] use switchback design for panel experiments and consider

average effect across time to make product decision.

Definition 6 (Average total effect). The average total effect is

τTE =
1

T

T∑
t=1

τTE
t .

Similar to the total effect, in many applications, we are interested in the TEC’s temporal average.

Definition 7 (Average temporal exposure contrast (ATEC)). For any exposure values k, k
′ ∈ ∆, we

define the average temporal exposure contrast between k and k
′
to be

τ̄k,k
′

=
1

T

T∑
t=1

τk,k
′

t

Remark 1. Without assuming that the exposure mappings are time-invariant, the definition of the

ATEC becomes more cumbersome as an exposure k ∈ ∆ may be in the image of fi,t for some t, but

not in the image of fi,t′ . That is, Yi,t(k) might be well-defined while Yi,t′(k) is not, which makes

taking temporal averages difficult.
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To conclude this section, we note by passing that there are certainly many other causal estimands

of interest. For example, a vast literature in econometrics and statistics studies estimation and

inference of spillover effects under either different designs or different model assumptions [Leung,

2020, Bramoullé et al., 2020, Vazquez-Bare, 2022].

2.1.4 Estimation and inference

The observed data

For any choice of exposure mappings {fi,t}, the observed assignment path W1:n,1:t induces the

exposure Hi,t = fi,t(W1:n,1:t) for each i and t; in particular, the assignment mechanism P(W1:n,1:t)

induces a distribution for the exposures P(Hi,t) for each i and t. Under Assumption 23, the observed

outcomes Yi,t for unit i at time t can therefore be written:

Yi,t =
∑
k∈∆

1(Hi,t = k)Yi,t(k), ∀i ∈ 1, · · · , n,∀t ∈ 1, · · · , T ,

We will use the observed data to estimate the causal effects defined in 2.1.3.

Estimation

For the different interference structures studied in the following sections, we will rely on Horvitz-

Thompson estimators [Horvitz and Thompson, 1952], or variations of it; e.g., to estimate τk,k
′

t , we

will use:

τ̂k,k
′

t =
1

n

n∑
i=1

1(Hi,t = k)

P(Hi,t = k)
Yi,t −

1

n

n∑
i=1

1(Hi,t = k
′
)

P(Hi,t = k′)
Yi,t. (2.1)

Taking the temporal average of (2.1) provides a natural estimator of τ̄k,k
′

,

ˆ̄τk,k
′

=
1

T

T∑
t=1

τ̂k,k
′

t . (2.2)

Similarly, if we let fi,t(11:n,1:t) = h1
i,t and fi,t(01:n,1:t) = h0

i,t, then we can estimate total effect at

time t (c.f. Definition 4) by the following estimator

τ̂TE
t =

1

n

n∑
i=1

1(Hi,t = h1
i,t)

P(Hi,t = h1
i,t)

Yi,t −
1

n

n∑
i=1

1(Hi,t = h0
i,t)

P(Hi,t = h0
i,t)

Yi,t. (2.3)

3We additionally assume that each unit fully complies with the assignment, leaving the relaxation of this assumption
as future work.
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Again, we have a natural estimator of average total effect induced by the above estimator

ˆ̄τTE =
1

T

T∑
t=1

τ̂TE
t . (2.4)

The properties of these estimators are discussed in details in the rest of this manuscript.

Randomization-based inference

Throughout this chapter, we adopt the randomization-based framework— that is, we consider the

potential outcomes as fixed, with the assignment being the only source of randomness. This frame-

work has seen a recent uptake in causal inference [Lin, 2013, Li and Ding, 2017, Li et al., 2019]

and has become the standard for analyzing experiments with population interference [Aronow and

Samii, 2017, Basse and Feller, 2018, Chin, 2018, Sävje et al., 2021] and unbounded carryover effects

[Bojinov and Shephard, 2019, Rambachan and Shephard, 2019, Bojinov et al., 2021b, 2022].

There are two dominant inferential strategies within the randomization framework. The first

is to use Fisher (conditional) randomization tests for sharp null hypotheses of no exposure effects,

or for pairwise null hypotheses contrasting two exposures. While these tests deliver p-values that

are exact and non-asymptotic, they are challenging to run with complex exposure mappings [Athey

et al., 2018, Basse et al., 2019, Puelz et al., 2022].

The second, which we focus on in this chapter, is to construct confidence intervals based on

the asymptotic distribution of our estimators. Intuitively, the asymptotic distribution represents a

sequence of hypothetical randomized experiments in which either the number of units increases, the

number of time steps increases, or both [Li and Ding, 2017, Bojinov et al., 2021b]. Within each

step, we apply the analogous assignment mechanism, obtain the observed data, and compute our

proposed estimand to estimate the causal effect of interest [Aronow and Samii, 2017, Chin, 2018].

Under the randomization framework, it is easy to show that the Horvitz-Thompson estimators

τ̂k,k
′

t , ˆ̄τk,k
′

, τ̂TE
t and ˆ̄τTE are unbiased for τk,k

′

t , τ̄k,k
′

, τTE
t and τ̄TE , respectively4; obtaining

central limit theorems in this setting, however, is notoriously challenging. In the next two sections,

we develop such results for the above four estimators under different experiment assumptions.

2.2 Panel experiments with population interference and no

carryover effects

Depending on their structure and on the researcher’s goals, panel experiments with multiple treat-

ment periods may be a blessing or a curse. Suppose the temporal dimension does not interact

with the interference mechanism, which occurs when there is only purely population interference.

4For example, see Bojinov and Shephard [2019] and Aronow and Samii [2017] for explicit proof.
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In that case, the inference is equivalent to the standard experimental setup (Appendix 2.7.1), or

it may benefit from the additional information if we are willing to consider a different estimand

(Section 2.2.1) or additional assumptions (Section 2.2.2). In contrast, the presence of population

spillovers in addition to the carryover effects from the previous section — a setting we call “mixed

interference” — significantly compromises our ability to draw inference (see Section 2.3). In this

setting, however, if the researcher has control over the temporal dimension, it may be possible to

reduce the carryover effects by increasing the physical time between randomization points or adding

a “cool-off” period Bojinov et al. [2022].

We work exclusively with temporally independent assignment mechanisms in this section, i.e.,

W1:n,t and W1:n,t′ are independent for any t and t
′
. We assume the same set of assumptions for

each time step t as in Appendix 2.7.1.

2.2.1 Average temporal exposure contrast

In Section 2.7.1, we showed that under pure population interference, inference on the TEC at time

t could strictly be reduced to the cross-sectional setting, where the only relevant asymptotic regime

takes n→∞. When considering the ATEC and its natural estimator ˆ̄τk,k
′
, however, the asymptotic

picture changes and we may now consider, broadly speaking, three regimes: (1) T fixed and n→∞;

(2) T → ∞ and n → ∞; (3) T → ∞ and n fixed. An important insight that we will emphasize in

this section is that inference in these three regimes requires different constraints on the population

interference mechanism. Roughly speaking, the larger T is relative to n, the more interference we

can tolerate.

To make this more formal, denote by d
(t)
n the maximal number of dependent exposure values

for any unit i at time step t. Let dn = lim supt→∞ d
(t)
n with the convention that for fixed T ,

dn = max{d(1)n , · · · , d(T )
n }. Hence, dn in this section is different from dn in the previous section in

the sense that it is a bound on all time steps. Our first result establishes a central limit theorem in

the fixed T regime.

Theorem 8. Suppose we have pure population interference, then for any T , under Assumption 2

and Assumptions 16-18 in Appendix 2.7.1 and the condition that dn = o(n1/4), we have

√
nT (ˆ̄τk,k

′

− τ̄k,k
′

)√
1
T

∑T
t=1 σ

2
n,t

d−→ N (0, 1),

as n→∞, where σ2
n,t = Var(

√
nτ̂k,k

′

t ).

This first theorem states a central limit theorem for the regime where T is fixed and n → ∞,

making it relevant for applications where N is much larger than T . Notice that, like Theorem 19,

it requires dn = o(n1/4). Intuitively, this is because this asymptotic regime is closest to that of the
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previous section: any finite number of time periods T is negligible compared with infinitely many

observations n.

At the other extreme, we consider the regime where T →∞ and n is fixed:

Theorem 9. Suppose we have pure population interference and Assumptions 2, 16, 17 are satisfied.

Let σ2
n,t = Var(

√
nτ̂k,k

′

t ), we further assume that 1
T

∑T
t=1 σ

2
n,t is bounded away from 0 for any T .

We then have √
nT (ˆ̄τk,k

′

− τ̄k,k
′

)√
1
T

∑T
t=1 σ

2
n,t

d−→ N (0, 1),

as T →∞.

This central limit theorem makes no assumption whatsoever on the interference mechanism,

beyond assuming that there are no carryover effects: in particular, we allow a unit’s outcome to

depend on any other unit’s assignment. This perhaps surprising fact sheds some light into the

nature of inference for the ATEC, and how it differs from the TEC. Intuitively, a central limit

theorem requires enough “nearly independent” observations: this means that even if at any time

step t, the observations are all correlated, we can still have infinitely many independent observations

if: (1) observations are uncorrelated across time and (2) we observe infinitely many time periods.

The next theorem formalizes this intuition, by making the trade-off between the growth rates of

T and dn explicit:

Theorem 10. Suppose we have pure population interference and Assumption 2, Assumptions 16-18

are satisfied, then for T = T (n) such that either

n

T
→ 0 (2.5)

or
min{d2n, n}√

nT
→ 0 (2.6)

holds, we have √
nT (ˆ̄τk,k

′

− τ̄k,k
′

)√
1
T

∑T
t=1 σ

2
n,t

d−→ N (0, 1),

as n→∞, where σ2
n,t = Var(

√
nτ̂k,k

′

t ).

Condition (2.5) is actually a special case of condition (2.6): if we do not impose any assumptions

on the interference, min{d2n, n} is just n, so we need n√
nT
→ 0, which is equivalent to n

T → 0.

Condition 2.6 gives us more subtle control over the rate of growth required of T for any given

level of interference. For instance, while for finite T we would require dn = o(n1/4), if T grows

as T (n) =
√
n we only require dn = o(n1/2). As with the previous theorem, the intuition behind
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this result is that as dn becomes larger, the number of “nearly independent” observations at each

time point shrinks — this must be counterbalanced by an increase in the the number of temporal

observation, i.e, an increase in the rate of T = T (n).

Unfortunately, as is typical in finite population causal inference, Var(τ̂k,k
′

t ) contains terms that

are products of potential outcomes that can never be simultaneously observed from a single exper-

iment, making it non-identifiable [Basse and Bojinov, 2020]. Instead, researchers derive an upper

bound to the variance and compute unbiased estimates for this bound, allowing them to conduct

conservative inference (i.e., derive confidence intervals with higher coverage than the nominal level).

Without making assumptions on the assignment mechanism, we can obtain a simple bound by re-

placing all non-observable products of potential outcomes with the sum of their squares [Aronow

and Samii, 2017], we denote the estimate of the bound by V̂ar(
√
nτ̂k,k

′

t ). The specific expression can

be found in the following proposition:

Proposition 1. (Estimator of variance) We let

V̂ar(
√
nτ̂k,k

′

) =
1

n

{ n∑
i=1

1(Hi = k)(1− πi(k))

[
Yi

πi(k)

]2
+

n∑
i=1

∑
j ̸=i,πij(k)=0

[
1(Hi = k)Y 2

i

2πi(k)
+

1(Hj = k)Y 2
j

2πj(k)

]

+

n∑
i=1

∑
j ̸=i,πij(k)>0

1(Hi = k)1(Hj = k)× πij(k)− πi(k)πj(k)

πij(k)

Yi

πi(k)

Yj

πj(k)

+

n∑
i=1

1(Hi = k
′
)(1− πi(k

′
))

[
Yi

πi(k
′)

]2
+

n∑
i=1

∑
j ̸=i,πij(k

′
)=0

[
1(Hi = k

′
)Y 2

i

2πi(k
′)

+
1(Hj = k

′
)Y 2

j

2πj(k
′)

]

+

n∑
i=1

∑
j ̸=i,πij(k

′
)>0

1(Hi = k
′
)1(Hj = k

′
)× πij(k

′
)− πi(k

′
)πj(k

′
)

πij(k
′)

Yi

πi(k
′)

Yj

πj(k
′)

−2

n∑
i=1

∑
j ̸=i,πij(k,k

′
)>0

(
πij(k, k

′
)− πi(k)πj(k

′
)
)
× 1(Hi = k)1(Hj = k

′
)

πij(k, k
′)

Yi

πi(k)

Yj

πj(k
′)

+2

n∑
i=1

∑
j ̸=i,πij(k,k

′
)=0

[
1(Hi = k)Y 2

i

2πi(k)
+

1(Hj = k
′
)Y 2

j

2πj(k
′)

]}
,

then E
[
V̂ar(
√
nτ̂k,k

′

)
]
≥ Var(

√
nτ̂k,k

′

)

We omit the proof here as it can be found in Aronow and Samii [2017]. We drop the subscript

t to ease notations. With the above proposition and central limit theorems, inference proceeds as

follows:

Proposition 2. Suppose Theorem 8 or 10 holds, then for any δ > 0,

P

τ̄k,k
′

∈

ˆ̄τk,k′

−
z1−α

2√
1− δ

√√√√ 1

T 2

T∑
t=1

V̂ar(τ̂k,k
′

t ), τ̂k,k
′

+
z1−α

2√
1− δ

√√√√ 1

T 2

T∑
t=1

V̂ar(τ̂k,k
′

t )

 ≥ 1− α
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for large n. Moreover, suppose Theorem 9 holds, then for any δ > 0,

P

τ̄k,k
′

∈

ˆ̄τk,k′

−
z1−α

2√
1− δ

√√√√ 1

T 2

T∑
t=1

V̂ar(τ̂k,k
′

t ), τ̂k,k
′

+
z1−α

2√
1− δ

√√√√ 1

T 2

T∑
t=1

V̂ar(τ̂k,k
′

t )

 ≥ 1− α

for large T .

The proof of the above proposition builds on the proof of Proposition 9 in Appedix 2.7.1.

2.2.2 Shrinkage estimator under stability assumption

In Section 2.7.1 and Section 2.2.1, we considered inference on the TEC and ATEC under population

interference. In this section, we focus on the following question: can we leverage the temporal

information to improve inference on the TEC? Our results here are weaker than in the previous

section — indeed, we provide neither central limit theorem nor asymptotic confidence interval —

but we believe they are an exciting avenue for future work.

So far, we have considered only Horvitz-Thompson estimators which, while analytically tractable,

are known to have large variance when exposure probabilities are small. The key idea of this section

is that if the potential outcomes do not vary too much across time, then estimates of the TEC at

time t′ < t can be used to improve our estimate of the TEC at time t. This assumption can be

formalized as follows:

Assumption 11 (Weak stability of potential outcomes). We say the potential outcome matrix Yi,t, i =

1, · · · , N , t = 1, · · · , T is ϵ-weakly stable if for each i and exposure value k, we have |Yi,t(k) −
Yi,t+1(k)| ≤ ϵ,∀t ∈ {1, · · · , T − 1}. If we further assume that ϵ = 0, we then say that the potential

outcome matrix is strongly stable.

Our results can be easily generalized to the case where the uniform bound ϵ in the definition is

replaced by a time dependent bound ϵt. Throughout, we focus on the estimation of the total effect

at time t as an example to illustrate how we can leverage temporal information under weak stability.

Under pure population interference and time-invariant exposure mappings,

τTE
t =

1

n

n∑
i=1

Yi,t(h
1
i )−

1

n

n∑
i=1

Yi,t(h
0
i ), (2.7)

where h1
i = fi(1t,1:n) and h0

i = fi(0t,1:n).

To build some intuition we first investigate how to leverage just a single past time period,

t′ = t − 1 to improve estimation at time t. The idea is that by considering a convex combination

τ̂ ct = ατ̂TE
t + (1 − α)τ̂TE

t−1, for some α ∈ [0, 1] as an estimator of τ̂TE
t , we introduce some bias but

reduce the variance — the hope being that under weak stability, the bias introduced will be modest

compared to the reduction in variance. This is formalized in the following proposition.
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Proposition 3 (Bound on the bias of τ̂ ct ).

|E[τ̂ ct ]− τTE
t | ≤ 2(1− α)ϵ (2.8)

As we can see, the absolute bias of τ̂ ct is bounded by a quantity that grows linearly with ϵ: if ϵ is

very small, then so will the maximum bias. In particular, τ̂ ct is unbiased for τTE
t if ϵ = 0 — which

corresponds to the assumption that the potential outcomes do not vary across time. Under some

conditions, it can be guaranteed that the gain in bias is more than counterbalanced by a reduction

in variance — making it a worthwhile trade-off, in terms of the mean squared error (MSE).

Proposition 4. Suppose V ar(τ̂TE
t ) > Cov(τ̂TE

t , τ̂TE
t−1), then there exists some α ∈ (0, 1) such that

τ̂ ct = ατ̂TE
t +(1−α)τ̂TE

t−1 has lower MSE than τ̂TE
t . Moreover, if we have V ar(τ̂TE

t )−V ar(τ̂TE
t−1) > 4ϵ2

then we know that τ̂ ct = 1
2 τ̂

TE
t + 1

2 τ̂
TE
t−1 has lower MSE than τ̂TE

t .

By Cauchy-Schwartz inequality,

Cov(τ̂TE
t , τ̂TE

t−1) ≤
√
Var(τ̂TE

t )
√
Var(τ̂TE

t−1),

hence if Var(τ̂TE
t ) > Var(τ̂TE

t−1), then

V ar(τ̂TE
t ) > Cov(τ̂TE

t , τ̂TE
t−1).

Therefore, as long as the current variance is larger, by choosing some α, the convex combination type

estimator would give us a better estimator in terms of MSE. Moreover, as the proposition suggests,

if we know the difference is bigger than 4ϵ2, we know that α = 1
2 is sufficient.

Note that if we further assume that assignments are also independent across time, then

Cov(τ̂TE
t , τ̂TE

t−1) = 0, hence we have the Proposition 5.

Proposition 5. Suppose that the assignments are independent across time, then there exists some

α ∈ (0, 1) such that τ̂ ct = ατ̂TE
t + (1− α)τ̂TE

t−1 has lower MSE than τ̂TE
t . The optimal α is given by

α = 1− V ar(τ̂TE
t )

4ϵ2+V ar(τ̂TE
t )+V ar(τ̂TE

t−1)
.

We show in the simulation section that the reduction in mean squared error is significant when

n is small.

Under the ϵ−stability assumption, Algorithm 1 provides a data dependent approach to estimate

ϵ and allows us to obtain estimate α̂ of the weight parameter α,

α̂ = 1− V̂ar(τ̂TE
t )

V̂ar(τ̂TE
t ) + V̂ar(τ̂TE

t′
) + 4(t− t′)2ϵ̂2

,
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Algorithm 1 Algorithm to estimate ϵ

1: Initialize ϵ̂ = 0.
2: For t = 1 to T − 1:

• For i = 1, 2, · · · , n compute hi,t and hi,t+1.

• If hi,t = hi,t+1, i.e., the exposure values at two adjacent time points are the same, compute
ϵi,t = |yi,t − yi,t+1|.

• If ϵi,t > ϵ̂, set ϵ̂ = ϵi,t.

3: Output ϵ̂.

where V̂ar(τ̂TE
t ) can be any estimator of the variance Var(τ̂TE

t ): we discuss a few options in Propo-

sition 11 of Appendix 2.7.2. In addition, under pure population interference and temporally inde-

pendent assignments,

Var(τ̂ ct ) = Var

(
ατ̂TE

t + (1− α)τ̂TE
t−1

)
= α2Var(τ̂TE

t ) + (1− α)2Var(τ̂TE
t−1),

which suggests the following plug-in estimator of the variance:

V̂ar(τ̂ ct ) = α̂2V̂ar(τ̂TE
t ) + (1− α̂)2V̂ar(τ̂TE

t−1).

We also give the expression of Cov(τ̂TE
t , τ̂TE

t−1) and an estimator for it in Proposition 10 and Propo-

sition 12 of Appendix 2.7.2 respectively. Equipped with the variance and the covariance estimators,

we can directly check the condition in Proposition 12. The optimal α is given in the proof and can

be estimated in the similar way as in the independent assignment case.

Up to now, the type of the estimator we consider is a convex combination of τ̂TE
t and τ̂TE

t−1. We

now consider a general version of this estimator such that we combine τ̂TE
t and τ̂TE

t′
for arbitrary

t
′
< t. We now give the analogous results.

Proposition 6. Suppose V ar(τ̂TE
t ) > Cov(τ̂TE

t , τ̂TE
t′

), then there exists some α ∈ (0, 1) such that

τ̂ ct = ατ̂TE
t + (1− α)τ̂TE

t′
has lower MSE than τ̂TE

t . Moreover, if we have V ar(τ̂TE
t )− V ar(τ̂TE

t′
) >

4(t− t
′
)2ϵ2, then τ̂ ct = 1

2 τ̂
TE
t + 1

2 τ̂
TE
t′

has lower MSE than τ̂TE
t .

Proposition 7. Suppose that the assignments are independent across time, then there exists some

α ∈ (0, 1) such that τ̂ ct = ατ̂TE
t + (1− α)τ̂TE

t′
has lower MSE than τ̂TE

t . The optimal α is given by

α = 1− V ar(τ̂TE
t )

4(t−t′ )2ϵ2+V ar(τ̂TE
t )+V ar(τ̂TE

t
′ )

.

As mentioned in the introduction to this section, we do not have formal inferential results at the

moment — this is an open area for future work. However, based on the variance estimator above,

we do have two crude ways to construct confidence intervals. The first one ignores the bias of τ̂ ct
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and uses Gaussian confidence interval. The second one takes advantage of Chebyshev’s inequality.

Specifically, note that

P(|τ̂ ct − (E[τ̂ ct ]− τTE
t )− τTE

t | ≥ ϵ) ≤ Var(τ̂ ct )

ϵ2
,

hence ∀δ > 0,

P
(
τTE
t ∈

[
τ̂ ct − (E[τ̂ ct ]− τTE

t )− ϵ, τ̂ ct − (E[τ̂ ct ]− τTE
t ) + ϵ

])
≥ 1− δ

for ϵ =

√
Var(τ̂c

t )
δ . Let b(τ̂ ct ) = E[τ̂ ct ] − τTE

t = (1 − α)(τTE
t−1 − τTE

t ) be the bias of our convex

combination estimator. If we estimate b(τ̂ ct ) by b̂(τ̂ ct ) = (1 − α̂)(τ̂TE
t−1 − τ̂TE

t ), then we can use the

following interval as an approximate (1− δ)-level confidence interval of τTE
t :τ̂ ct − b̂(τ̂ ct )−

√
V̂ar(τ̂ ct )

δ
, τ̂ ct − b̂(τ̂ ct ) +

√
V̂ar(τ̂ ct )

δ

 .

We explore empirically the coverage of the above approximate confidence intervals with a simulation

study in Section 2.4.

The approach we have described in this section naturally extends to using the k − 1 previous

time steps, yielding the weighted combination estimator:

τ̂ ct = α1τ̂
TE
t−k+1 + · · ·+ αk τ̂

TE
t ,

where α1, . . . , αk can be estimated by solving a slightly more involved convex optimization problem.

We describe this approach in full details in Appendix 2.7.3.

2.3 Panel experiments with population interference and car-

ryover effects

Section 2.2.1 shows that adding a temporal dimension does not hurt inference and may even help if

interference remains confined to the population dimension. Mixed interference, in contrast, affects

our ability to draw inference both for the TEC and ATEC, albeit in different ways. For temporal

exposure contrasts (TEC), the same theorem as in Section 2.7.1 holds (recall that dn is the maximal

degree of the dependency graph of H1, · · · , Hn):

Theorem 12. Under Assumption 2, Assumptions 16-18 and the condition that dn = o(n1/4), we

have √
n(τ̂k,k

′

t − τk,k
′

t )

Var(
√
nτ̂k,k

′

t )1/2

d−→ N (0, 1)

The difference with the pure population setting is not mathematical but conceptual: in the
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mixed setting, the exposures involve the assignments over previous time steps. Consequently, there

are generally many more exposures than in the pure population setting, and each unit has a lower

probability of receiving each. This leads to Horvitz-Thompson estimators with a much larger vari-

ance.

For the average temporal exposure contrast, the difference between population interference and

mixed interference is starker. The main difficulty is that mixed interference breaks the temporal

independence that powered the results of section 2.2.1. We first establish a general theorem and

then give a specific setting under which we have a concrete result. Throughout, we assume that all

the potential outcomes are uniformly bounded and the overlap assumption is satisfied for every time

step t and every unit i. As in the cross-sectional setting, we impose a condition that controls the

rate at which the variance shrinks:

Assumption 13. Assume that

lim inf
n→∞

Var(
√
nT ˆ̄τk,k

′

) ≥ ϵ > 0

for some ϵ.

This technical assumption (we are generally more worried about the variance not shrinking fast

enough) rules out the pathological case that the variance vanishes as n→∞.

Theorem 14. Under Assumption 2 and Assumption 13, suppose {Hi,t}ni=1 is an s-dependent se-

quence of random variables for a fixed t and LEA(p) assumption is satisfied with some finite p. If

s, n, T are such that s5T 4 = o(n1−α) for some 0 < α < 1, then we have that

√
nT (ˆ̄τk,k

′

− τ̄k,k
′

)√
Var(
√
nT ˆ̄τk,k

′
)

d−→ N (0, 1)

as n→∞.

{Hi,t}ni=1 is an s-dependent sequence of random variables if and only if for any index set I, J ⊆ [n],

{Hi,t}ni=1 and {Hi,t}ni=1 are independent so long as minj∈J j − maxi∈I i > s. The above theorem

requires general assumptions on exposure values as well as the asymptotic variance though inde-

pendent assignments are not required. We now focus on a specific setting, to illustrate the type of

results that can be derived under mixed interference.

Consider the following natural temporal extension of the stratified interference setting (Hudgens

and Halloran [2008]; Basse and Feller [2018]):

fi,t(w1:n,1:t) = f(wi,t−1, wi,t, {wj,t−1}j∈Ni,j ̸=i, {wj,t}j∈Ni,j ̸=i)

where Ni is the group to which unit i belongs. For convenience, we fix each group to be of size r 5.

5this also ensures that each unit is associated with exactly the same set of exposure values so that the exposure
contrast between two arbitrary exposure values is well-defined.
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Theorem 15. With the above setting and temporally independent assignments, under Assumption

13, suppose n, r, T are such that r = o((nT )
1
4 ), then

√
nrT (ˆ̄τk,k

′

− τ̄k,k
′

)√
Var(
√
nrT ˆ̄τk,k

′
)

d−→ N (0, 1)

as n→∞.

The theorem holds for heterogeneous group sizes as long as maxi ri = o((nT )
1
4 ) where ri = |Ni|

is the size of the group unit i belongs to. To do inference, we consider a specific example of stratified

interference:

fi,t(w1:n,1:t) =

wi,t−1, wi,t,
∑

j∈Ni,j ̸=i

wj,t−1,
∑

j∈Ni,j ̸=i

wj,t

 .

We focus on the Bernoulli design where each unit is independently assigned to treatment with

probability 1
2 . We consider the exposures k = (1, 1, r − 1, r − 1) and k′ = (0, 0, 0, 0). Such exposure

contrast is exactly the same as the total effect since essentially we are comparing the world of

everyone getting treatment to the world of everyone getting control. Notice that in this case, r

cannot be infinite, otherwise the overlap assumption would be violated. To ease notations, we index

each unit i by a tuple (l, q), meaning that unit i is the q-th unit in the l-th group6.

Proposition 8. Assuming the above setup, we can estimate the asymptotic variance by

B̂n

2
=

T∑
t=1

V̂ar(Xn,t) + 2

T−1∑
t=1

Ĉov(Xn,t, Xn,t+1),

6If we use a tuple (l, q) to represent the q−th unit in the l−th household, then we note by passing that 0 < C1 ≤
Y(l,q),t(k) ≤ C2 for all l, q, t, k for some C1, C2 is sufficient for Assumption 13.
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where

V̂ar(Xn,t) =
1

nrT

[
n∑

l=1

r∑
q=1

(22r − 1)
1(H(l,q),t = k)Y 2

(l,q),t

P(H(l,q),t = k)
+

n∑
l=1

r∑
q=1

(22r − 1)
1(H(l,q),t = k

′
)Y 2

(l,q),t

P(H(l,q),t = k′)

+

n∑
l=1

r∑
q=1

(
1(H(l,q),t = k)Y 2

(l,q),t

P(H(l,q),t = k)
+

1(H(l,q),t = k
′
)Y 2

(l,q),t

P(H(l,q),t = k′)

)

+

n∑
l=1

r∑
q1=1

∑
q2 ̸=q1

(
(22r − 1)

1(H(l,q1),t = k,H(l,q2),t) = k)Y(l,q1),tY(l,q2),t

P(H(l,q1),t = k,H(l,q2),t) = k)
+

+ (22r − 1)
1(H(l,q1),t = k

′
, H(l,q2),t) = k

′
)Y(l,q1),tY(l,q2),t

P(H(l,q1),t = k′ , H(l,q2),t) = k′)

)

+

n∑
l=1

r∑
q1=1

∑
q2 ̸=q1

1(H(l,q1),t = k)Y 2
(l,q1),t

P(H(l,q1),t = k)
+

n∑
l=1

r∑
q1=1

∑
q2 ̸=q1

1(H(l,q2),t = k
′
)Y 2

(l,q2),t

P(H(l,q2),t = k′)

 (2.9)

and

Ĉov(Xn,t, Xn,t+1) =
1

nrT

n∑
l=1

r∑
q1=1

r∑
q2=1

(
(2r − 1)

1(H(l,q1),t = k,H(l,q2),t+1 = k)Y(l,q1),tY(l,q2),t+1

P(H(l,q1),t = k,H(l,q2),t+1 = k)

+(2r − 1)
1(H(l,q1),t = k

′
, H(l,q2),t+1 = k

′
)Y(l,q1),tY(l,q2),t+1

P(H(l,q1),t = k′ , H(l,q2),t+1 = k′)

+
1(H(l,q1),t = k

′
)Y 2

(l,q1),t

P(H(l,q1),t = k′)
+

1(H(l,q2),t+1 = k)Y 2
(l,q2),t+1

P(H(l,q2),t+1 = k)

+
1(H(l,q1),t = k)Y 2

(l,q1),t

P(H(l,q1),t = k)
+

1(H(l,q2),t+1 = k
′
)Y 2

(l,q2),t+1

P(H(l,q2),t+1 = k′)

)
(2.10)

The expression of the variance is immediate from the setup, (2.34) and (2.35). The estimator

is obtained by replacing the non-identifiable terms by an upper bound and estimating the upper

bound accordingly.

Remark 2. The difficulty for doing inference under more general setting comes from the fact that it is

hard to give explicit expression of the variance. Since there is dependence across time, the variance of

ˆ̄τk,k
′

also involves covariance between Horvitz-Thompson estimators across different times. Hence,

in this case, we need at least more assumptions on the assignment mechanism in order to express

the variance term explicitly.

2.4 Simulations

In this section, we use simulations to supplement some of our theoretical results, and to provide

empirical guidance when theory is lacking. Section 2.4.1 explores some of the finite sample properties
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of our central limit theorems in different realistic settings. Section 2.4.2 explores empirically some

properties of the convex combination estimator proposed in Section 2.2.2: in particular, although we

do not prove central limit theorems for this estimator, we show that confidence intervals based on

normal approximations behave well in our simulation, and could therefore be reasonable candidates

for practical use.

2.4.1 Simulations for central limit theorems

We first explore the finite sample behavior of our central limit theorems. To make our simulations

relevant, we consider a version of the popular stratified interference setting (Duflo and Saez [2003];

Basse and Feller [2018]), in which individuals are nested in groups of varying sizes, and interference

may occur within but not across groups. Specifically, we consider the exposure mapping fi(w1:n) =

(wi, ui), where ui = 1 if unit i has at least one treated neighbor and ui = 0 otherwise, so each unit

may receive one of four exposures: (0,0), (0,1), (1,0) and (1,1). Throughout, we consider a two-

stage design whereby each group is assigned independently with probability 1
2 to a high-exposure or

low-exposure arm, and then each unit is assigned to treatment independently with probability 0.9

in high-exposure groups, and 0.1 in low-exposure groups.

We focus on the central limit theorems for ATEC. Theorem 10 establishes asymptotic results for

ATEC under less constraining assumptions on the interference mechanism than for TEC (Theorem 19

in Appendix 2.7.1). To illustrate this point, we consider the stratified interference setting. We

assume that the size of each group is bounded by n1/3. In this case, dn = n1/3 and hence T =
√
n

suffices for Theorem 10. Compared to dn = o(n1/4) in the cross-sectional setting, we are able to

have larger group size. We consider the exposure mapping fi(w1:n) = (wi, ui) where ui = 0 if less

than 25% of the neighbors are treated; ui = 1 if between 25% and 50% of the neighbors are treated;

ui = 2 if between 50% and 75% of the neighbors are treated and ui = 3 if more than 75% of the

neighbors are treated. We generate the potential outcomes for unit i at time step t according to

N (3wi +2ui +5+ ϵt, 1), where ϵt is uniform{−1, 1}. Figure 2.1 and 2.2 show that n = 1000 suffices

for a good approximation. Moreover, the coverage of our 95% confidence interval is 95.4%.

2.4.2 Estimation under the stability assumption

In Section 2.2.2, we showed that with an appropriate choice of weights, the family of convex combina-

tion estimators outperforms the Horvitz-Thompson estimator. We illustrate this with a simulation

study. We also show that although not supported by theoretical results, naively constructed confi-

dence intervals perform well in our simulated setting.
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Figure 2.1: Histogram, n = 1000
Figure 2.2: Q-Q normal plot, n = 1000

Sample Size n = 50 n = 100 n = 250 n = 500 n = 750 n = 1000

RMSE for τ̂TE
20 64.68 28.98 5.80 1.84 0.95 0.70

RMSE for τ̂ c20, k = 2 14.17 9.18 3.72 1.42 0.68 0.52

RMSE for τ̂ c20, k = 5 4.39 4.58 3.01 1.17 0.58 0.45

Table 2.1: Root mean squared errors (RMSE) for τ̂TE
20 , τ̂ c20 with k = 2 and τ̂ c20 with k = 5

Estimation under stability assumption for total effects

We consider a social network generated according to an Erdős-Rényi model, in which the units are

assigned to treatment or control following a Bernoulli(1/2) design at each time step. We assume a

local, pure population form of interference, summarized by the following exposure mappings:

fi(w1:n,t) =

wi,t,
1

|Ni|
∑
j∈Ni

wj,t

 (2.11)

where Ni is the neighborhood of the i-th unit; that is, we assume that only direct neighbors affect

one’s potential outcomes. For each unit i, we generate the potential outcomes at t = 1 randomly

from N (10, 1). Then, for each time t > 1, we generate the potential outcome Yi,t(k) uniformly

from the interval (Yi,t−1(k)− ϵ, Yi,t−1(k) + ϵ), so ϵ-stability holds. Throughout our simulations, we

assume that T = 20 and we are interested in the total effect at time step t = 20. We compare

the performance of the standard Horvitz-Thompson estimator and the performance of the convex

combination estimator for estimating the total effect τTE
T at time t = T = 20, varying both the

population size n and the number of time steps k used in the convex combination. We estimate ϵ

using Algorithm 1 described in Section 2.2.2; we use Proposition 5 to estimate α when k = 2, and

solve the optimization problem introduced in Appendix 2.7.3 for k ≥ 3.

We first fix ϵ to be 3 and vary the sample size. To make each unit have the same expected number

of neighbors, we scale the probability p in Erdős-Rényi model accordingly. For each n, we fix the
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Confidence Interval Network 1 Network 2 Network 3

Gaussian CI with variance estimated by V̂ar
d 92.9% 98.4% 95.9%

Gaussian CI with variance estimated by V̂ar
u

97.2% 99.8% 100%

Chebyshev CI with variance estimated by V̂ar
d 91.4% 94.1% 96.4%

Chebyshev CI with variance estimated by V̂ar
u

94.6% 95.6% 97.7%

Table 2.2: Coverage of two approximate confidence intervals for τTE
t with k = 2

graph and generate 100 realizations of assignments. Table 2.1 shows the root mean squared errors

for three kinds of estimators for the total effect: the usual Horvitz-Thompson estimator, the convex

combination type estimator with k = 2, and the convex combination estimator with k = 5. We see

that the convex combination type estimators effectively reduce the mean squared error. Moreover,

when n is relatively small, the reduction in mean squared error is significant.

Coverage of two approximate confidence intervals

Recall that in Section 2.2.2 we gave two approximate confidence intervals of τTE
t based on our

convex combination estimator τ̂ ct and variance estimator. We now provide coverage results of these

two approximate confidence intervals. We assume a social network generated from the Erdős-Rényi

Model with n = 100 and p = 0.05. We fix the stability parameter ϵ to be 3 and generate the data

in the same way as in the previous section. To calculate the coverage, we generate 1000 realizations

of the assignments and construct approximate confidence intervals accordingly.

Table 2.2 shows the two approximate confidence intervals provide reasonable coverage across

the three different social networks. Although the Gaussian confidence interval ignores the bias of

τ̂ ct , it tends to provide better coverage than the confidence intervals obtained from the Chebyshev

approach. Moreover, the Gaussian intervals tend to be shorter, making them practically more useful.

Appendix 2.7.5 provides an additional table showing the average lengths of the confidence intervals

in Table 2.2.

2.5 Two real data examples

We now apply our methods to two empirical applications. In the first application, we use the convex

combination estimator to analyze a panel experiment and show it reduces the variance and leads

to more reliable estimates of the temporal exposure contrast. In the second application, we run a

semi-synthetic experiment on a social network to demonstrate the necessity of our assumptions for

the validity of the analysis and provide further empirical evidence of the advantage of the convex

combination estimator.
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2.5.1 Rational cooperation

The panel experiment we analyze is from Andreoni and Samuelson [2006]. The authors test a

game-theoretic model of “rational cooperation” through a panel experiment. Specifically, in each

experiment session, they recruited 22 subjects to play 20 twice-played prisoners’ dilemmas, ensuring

that no player would meet the same partner twice. The twice-played prisoners’ dilemma consists of

two periods with different pay-off structures, as shown in Table 2.3. The parameters x1, x2 satisfy

x1, x2 ≥ 0, x1 + x2 = 10.

C D

C (3x1, 3x1) (0, 4x1)
D (4x1, 0) (x1, x1)

Period one

C D

C (3x2, 3x2) (0, 4x2)
D (4x2, 0) (x2, x2)

Period two

Table 2.3: Payoff structure in the experiment conducted by Andreoni and Samuelson [2006]. The
choice C denotes “cooperate” and the choice D “defect.”

Let λ = x1

x1+x2
, then for each round of the experiment, 22 subjects were grouped into 11 pairs,

and each pair was randomly assigned with a λ ∼ Unif{0, 0.1, · · · , 0.9, 1}. The outcomes were the

total payoffs. Since there are five sessions in total, we have 110 subjects and 2200 outcomes. We

use this panel experiment to illustrate that the convex combination estimator effectively reduces

the estimates’ variance and thus produces more reliable estimates. To this end, following Bojinov

et al. [2021b], we define treatment to be λ > 0.6 and control to be λ ≤ 0.6. This results in a panel

experiment with binary treatments and Bernoulli design with treated probability 5
11 . Under this

setup, we generally expect a positive treatment affect as the payoffs are more concentrated in period

two.

We next build a social network among all subjects in the experiment. If the players have played

each other in the first few rounds, then they should have some influence on each other for the later

rounds. Hence, we consider any players that played each other in the first five rounds of the game

as being connected. We then use the remaining 15 rounds as our experimental data. So, for our

panel experiment, we have n = 110 and T = 15. As Bojinov et al. [2021b] showed little evidence of

carryover effects, we assume there is only population interference. Then, we use the exposure model

in (2.11) and the temporal exposure contrast we are interested in is the exposure contrast between

(0,≤ 0.2) and (1,≥ 0.8) for each time step. We now report the Horvitz-Thompson estimates of the

temporal exposure contrast for the last 10 time steps, the estimates from the 2-step, and the 5-steps

convex combination estimator estimates. Table 2.4 shows the results.

In general, we do not expect the temporal exposure contrasts to be different for different time

steps since all the 15 rounds of games were done together in one session. And as we can see from

the table, the convex combination estimator leads to estimates with much smaller variance. Note

that the estimates from 2-step and 5-steps convex combination estimators are similar, illustrating
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Time Step T = 6 T = 7 T = 8 T = 9 T = 10 T = 11 T = 12 T = 13 T = 14 T = 15 Variance

Horvitz-Thompson -8.08 11.03 29.39 -3.53 57.48 -3.76 10.29 23.40 -13.70 16.19 452.80

2-step -6.84 9.48 25.40 -2.99 33.81 -2.98 9.83 22.10 -11.20 14.64 226.13

5-steps -6.83 9.46 25.38 -2.98 33.74 -2.97 9.82 22.09 -11.17 14.63 225.37

Table 2.4: Estimates for temporal exposure contrasts from the panel experiment in Andreoni and
Samuelson [2006]

that the choice of k is not crucial since the estimator itself takes care of it. Moreover, as we pointed

out earlier, we would expect positive exposure contrast and the estimates from convex combination

estimator are more reliable in the sense that it shrinks the estimates towards zero when the Horvitz-

Thompson estimator gives a negative value (this is possible since we only have n = 110 subjects

which is a small number).

2.5.2 Facebook network semi-synthetic experiment

We now describe a semi-synthetic experiment using the Swarthmore College social network from the

Facebook 100 dataset [Traud et al., 2012]. All networks in this dataset are complete online friendship

networks for one hundred colleges and universities collected from a single-day snapshot of Facebook

in September 2005. The network we use is of size 1657 with 61049 edges. We use this network as the

graph that describes population interference among units and generate an assignment vector using

a Bernoulli design with a success probability of 1/2. We first show mean squared error reduction

of using convex combination estimator to estimate temporal exposure contrast between (0, 0) and

(1, 1) at T = 20. Let ρi,t =
1

|Ni|
∑

j∈Ni
wj,t, we assume the following exposure mappings:

fi(w1:n,t) = (wi,t, ρ̃i,t), where ρ̃i,t =


0 if ρi,t ≤ 0.3,

ρi,t if 0.3 ≤ ρi,t ≤ 0.7,

1 if ρi,t > 0.7.

Now we make a panel experiment with T = 20. We generate the outcomes at each time step

according to a linear model that is linear in wi,t and ρ̃i,t and add a time-varying component ϵt that

is uniformly distributed on [−0.5, 0.5]. Table 2.5 shows the empirical bias, the variance, and the

root mean squared errors (RMSE) of the estimates of the temporal exposure contrast at time step

T = 20 by using Horvitz-Thompson estimator, 2-step convex combination estimator, and 5-step

convex combination estimator. As expected, the convex combination estimator reduces the RMSE

significantly. Though the biases seem large compared to the Horvitz-Thompson estimator, as we

mentioned previously, we can also control the amount of bias we tolerate, which implicitly accounts

for the time effect.

The maximal degree for the network is 577, which is far greater than the
√
n. To make Theorem 10
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Estimator of TEC Horvitz-Thompson 2-step CVX 5-step CVX

RMSE 50.48 3.57 3.31

Empirical bias 0.26 2.75 2.80

Empirical variance 2548.495 5.19 3.09

Table 2.5: RMSE for different estimators of temporal exposure contrast at T = 20

Figure 2.3: Histogram, T = 20 Figure 2.4: Histogram, T = 100

hold approximately for this network, we require having an extremely large T . Below we illustrate

this empirically through a semi-synthetic experiment. Let

fi(w1:n,t) = (wi,t, ρ̃i,t), where ρ̃i,t =



0 if ρi,t ≤ 0.35,

1 if 0.35 < ρi,t ≤ 0.5,

2 if 0.5 < ρi,t ≤ 0.65,

3 if ρi,t > 0.65.

We are interested in the average temporal exposure contrast between (1, 3) and (0, 0). Since the

network is dense, with an average degree of 73.69, we expect the Horvitz-Thompson estimator to be

inaccurate since units with exposure values (1, 3) or (0, 0) will unlikely to be those units with many

neighbors. Figure 2.3 and 2.4 show the histograms of Horvitz-Thompson estimates for T = 20 and

T = 100 respectively. Here, we calculate ATEC for 10,000 realizations, and since the computation

of the variance estimate is time-consuming, we do not rescale the estimates.

Figure 2.3 shows that when T = 20 the histogram is far from normally distributed. Figure 2.4

shows that when T = 100, although the data are much closer to being normally distributed, they

still are not. Also, note that the centers of these two histograms are away from 0; as we stated

above, since some of the neighborhoods are extremely large, we cannot observe the exposure value

we would need for units with large neighborhoods. This illustrates the necessity of condition (2.6) —
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reliable inference requires more experiments if we have a dense network. We also report the coverage

using a Gaussian confidence interval here. For both T = 20 and T = 100, the empirical coverage of

naive Gaussian confidence interval is around 80%.

2.6 Conclusion

In this chapter, we have developed estimation and inference results for panel experiments with

population interference. In the standard setting with pure population interference, we prove a central

limit theorem under weaker conditions than previous results in the existing literature and highlight

the trade-off between flexibility in the design and the interference structure. When population

interference and carryover effects co-exist, we propose a novel central limit theorem. Finally, we

introduce a new type of assumptions —stability assumptions — as an alternative to (or complement

of) exposure mappings for controlling interference in temporal settings.

Many interesting avenues of investigation around interference in panel experiments have been left

unexplored in this manuscript and will be the object of future work. First, our results only consider

the Bernoulli design: this is, of course, limiting, but it does present a useful benchmark. We are

particularly interested in exploring how to design panel experiments in the presence of population

interference and carryover effects. Basse et al. [2019] study minimax designs with carryover effects,

but the symmetries they exploit break under population interference, so new approaches are required.

Second, while our simulations show that our convex combination estimators seem to behave well,

our formal results under this new stability assumption are still limited. In particular, we plan to

study the asymptotic properties of these estimators and provide a firmer theoretical grounding for

their inferential properties. Third, explicit discussions on testing are not included. Though our

results do provide a way to test certain hypotheses by inverting the confidence intervals and there

has been literature [Bojinov et al., 2021b] that discuss how to conduct Fisher randomization test

for the sharp null hypothesis in panel experiments, more testing results would be more beneficial to

practitioners.

2.7 Appendix

2.7.1 Standard population interference

This appendix focuses on estimating TEC under population interference and assumes that either

the experiment was conducted over a single time point or that there are no carryover effects. In

both cases, we drop the subscript t for the remainder of the section. Our setup is now equivalent to

the one studied in Liu and Hudgens [2014], Aronow and Samii [2017], Chin [2018] and Leung [2022].
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Our Horvitz-Thompson type estimator τ̂k,k
′

now simplifies to,

τ̂k,k
′

=
1

n

n∑
i=1

[
1(Hi = k)

πi(k)
Yi(k)−

1(Hi = k
′
)

πi(k
′)

Yi(k
′
)

]
, (2.12)

where πi(k) = P(Hi = k) and πi(k
′
) = P(Hi = k

′
).

Aronow and Samii [2017] showed that if the potential outcomes and inverse exposure probabilities

are bounded, and the number of dependent pairs of Hi’s is of order o(n
2), then the estimator τ̂k,k

′

is consistent, (
τ̂k,k

′

− τk,k
′)
→P 0.

In addition, the authors provided an asymptotically conservative confidence interval of τ̂k,k
′

and

implicitly outlined a version of a central limit theorem in the proof. However, the conditions stated

in their derivations were sufficient but not necessary. Below, we establish a central limit theorem

for τ̂k,k
′

under weaker conditions and provide a detailed proof that builds on recent results by

Chin [2018]. We then illustrate the trade-offs between the strength of the interference structure

assumption and the assignment mechanism’s flexibility.

A central limit theorem

Our central limit theorem requires four additional assumptions. The first two assumptions bound

the potential outcomes and the inverse probabilities of exposure.

Assumption 16 (Uniformly bounded potential outcomes). Assume that all the potential outcomes

are uniformly bounded, i.e., |Yi(k)| ≤M for some M and for all i and k.

Assumption 17 (Overlap). Assume all the exposure probabilities are bounded away from 0 and 1,

i.e., ∃η > 0 such that ∀k and i, 0 < η ≤ πi(k) ≤ 1− η < 1.

Assumptions 16 and 17 are standard in the causal inference literature (Aronow and Samii [2017];

Leung [2022]). Assumption 16 holds in most practical applications as realizations of the outcome

variables are almost always bounded. Assumption 17 is necessary as vanishing exposure probabilities

make the causal question ill-defined as we cannot observe the associated potential outcomes.

The next assumption rules out the existence of a pathological subsequence nk along which the

limiting variance of our estimator is zero.

Assumption 18 (Nondegenerate asymptotic variance). Assume that lim infn→∞ Var(
√
nτ̂k,k

′

t ) > 0

for any t.

As a consequence of this assumption, for each t, there exists a constant c > 0 such that

Var(
√
nτ̂k,k

′

t ) ≥ c for all sufficiently large n. This type of assumption seems unavoidable, even

in settings without interference (see, e.g., Corollary 1 in Guo and Basse [2021], and subsequent

discussion).



2.7. APPENDIX 30

The fourth assumption quantifies the dependence among observations due to interference; to

define it, we require a notion of the dependency graph for a collection of random variables. We

define the dependency graph Gn for H1, · · · , Hn to be the graph with vertices V = {1, · · · , n} and
edges E such that (i, j) ∈ E if and only if Hi and Hj are not independent. The graph Gn models

the dependency relationship among n random variables H1, · · · , Hn. Let dn be the maximal degree

in this graph, which is equal to the maximal number of dependent exposure values for each unit.

Notice that the dependency graph depends both on the interference structure and on the assignment

mechanism.

We can now state the following central limit theorem for temporal exposure contrast.

Theorem 19. Under Assumptions 16-18 and the condition that dn = o(n1/4), we have

√
n(τ̂k,k

′

− τk,k
′

)

Var(
√
nτ̂k,k

′
)1/2

d−→ N (0, 1)

as n→∞.

Theorem 19 strengthens the result of Aronow and Samii [2017] in two ways. First, our As-

sumption 18 weakens Condition 6 of Aronow and Samii [2017], which requires the convergence

of Var(
√
nτ̂k,k

′

t ). Second, we allow for a higher range of dependence (dn = o(n1/4) compared to

dn = O(1) as in Aronow and Samii [2017]) among exposure values. The proof of this theorem relies

on recent results in Chin [2018].

Design and interference structure: a trade-off

Intuitively, Theorem 19 asserts that asymptotic normality holds so long as the dependency relations

among the Hi’s are moderate. However, since Hi = fi(W1:n) is determined by both function fi

and assignment W , the dependence structure among the Hi’s — and therefore the value of dn —

depends on both the exposure specification and the assignment mechanism.

This suggests that there exists a trade-off between the strength of the dependence in the Wi’s

induced by the assignment mechanism and the dependence induced by the interference structure.

The less restricted the interference structure is, the more restricted the assignment mechanism must

be; in reverse, the more restricted the interference structure, the more flexible one can be with

the design. We illustrate these insights with three special cases of Theorem 19, applied to popular

settings. We should also note that our condition on dn is not a sufficient condition for the central

limit theorem. For example, if we consider fi(Wi) = Wi (i.e., there is no interference) and W follows

completely randomized design, then the central limit theorem still holds (see Theorem 1 in Ding

[2017]). The discussion here mainly illustrates the entanglement between the assignment mechanism

and the interference structure from a general perspective.
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Example 2. Suppose that the interference structure among n units is adequately described by a

social network An, and assume that the exposure mapping is of the form fi(W1:n) = fi(WNi); that

is, only the neighbors’ assignments matter. Let δn be the maximal number of neighbors a unit can

have in the network An — which is distinct from the dependency graph. Then if δn = o(n1/8) and

the Wi’s are independent (i.e., the design is Bernoulli), then dn = o(n1/4) as required by Theorem 19.

This first example explores one extreme end of the trade-off, in which the assignment mechanism

is maximally restricted — theWi’s are independent — which allows for a comparatively large amount

of interference.

Example 3. We consider the graph cluster randomization approach (Ugander et al. [2013]) in which

case we group units into clusters and randomize at the cluster level. Following the notations in

Ugander et al. [2013], we let the vertices be partitioned into nc clusters C1, · · · , Cnc
. The graph

cluster randomization approach assigns either treatment or control to all the units in each cluster.

Suppose one’s potential outcomes depend only on the assignments of its neighbors. Let δn be

the maximal number of neighbors one can have and cn be the maximal size of the cluster. Then

dn = o(n1/4) for δ2n + δncn = o(n1/4).

Example 4. Another commonly studied scenario is the “household” interference (Basse and Feller

[2018]; Duflo and Saez [2003]). In household interference, we assume that each unit belongs to a

“household” and their potential outcomes depend only on the assignments of the units within the

“household”. Suppose we have a two-stage design such that we first assign each household into

treatment group or control group independently and then we assign treatments to units in each

household depending on the assignment of their associated household. Let rn be the maximal size

of the “household”, then dn = o(n1/4) for rn = o(n1/4).

Table 2.6 summarizes the above three examples. In Example 2, to have a general network

interference setting with the maximum possible number of neighbors for each unit, we constrain

the design to be the Bernoulli design. Further limiting the interference, like in Example 4 where

the interference is restricted within households, we can have a more complex two-stage design. In

the same spirit, Example 3 shows that for a highly dependent design, we need an even stronger

condition on the interference structure, indicated by a stronger rate condition on δn. In general, a

weaker assumption on the interference structure induces a more complex dependence graph for the

exposures, which in turn reduces our flexibility in the choice of design.

Interference Design Conditions

Network Interference Bernoulli Design δn = o(n1/8)

Network Interference Graph Cluster Randomization δ2n + δncn = o(n1/4)

Group Interference Two-stage Design rn = o(n1/4)

Table 2.6: Trade-off between design and interference
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Inference

The central limit theorem stated in Theorem 19 serves as our basis for inference.

Proposition 9. Assuming all the assumptions in Theorem 19, then for any δ > 0,

P

(
V̂ar(τ̂k,k

′

)

Var(τ̂k,k
′
)
≥ 1− δ

)
→ 1.

where V̂ar(τ̂k,k
′

) = n−1V̂ar(
√
nτ̂k,k

′

). Therefore, we can construct asymptotically conservative con-

fidence intervals based on the variance estimator: for any δ > 0,

P
(
τk,k

′

∈
[
τ̂k,k

′

−
z1−α

2√
1− δ

√
V̂ar(τ̂k,k

′
),

τ̂k,k
′

+
z1−α

2√
1− δ

√
V̂ar(τ̂k,k

′
)

])
≥ 1− α

for large n.

V̂ar(
√
nτ̂k,k

′

) is the same as the one given in Proposition 2. Once again, this result strengthens

that of Aronow and Samii [2017] by both removing the requirement that nVar(τ̂k,k
′

) converge, and

by relaxing the constraint on the interference mechanism. Note that here δ > 0 is arbitrary and we

present detailed simulations in Section 2.4 with δ = 0.04.

2.7.2 Proofs and additional discussions

To begin with, we provide technical tools that we will use in our proofs. We first state a lemma

from Ross [2011]:

Lemma 1. Let X1, · · · , Xn be a collection of random variables such that E
[
X4

i

]
<∞ and E [Xi] = 0.

Let σ2 =Var(
∑

i Xi) and S =
∑

i Xi. Let d be the maximal degree of the dependency graph of

(X1, · · · , Xn). Then for constants C1 and C2 which do not depend on n, d or σ2,

dW(S/σ) ≤ C1
d3/2

σ2

(
n∑

i=1

E
[
X4

i

])1/2

+ C2
d2

σ3

n∑
i=1

E|Xi|3, (2.13)

where dW(S/σ) is the Wasserstein distance between S/σ and standard Gaussian.

Second, we provide the expression for the variance of τ̂k,k
′

:
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Lemma 2 (Variance of Horvitz-Thompson estimator). We have that (Aronow and Samii [2017]):

Var(
√
nτ̂k,k

′

) =
1

n

n∑
i=1

πi(k)(1− πi(k))

(
Yi(k)

πi(k)

)2

+
1

n

n∑
i=1

πi(k
′
)(1− πi(k

′
))

(
Yi(k

′
)

πi(k
′)

)2

+
2

n

n∑
i=1

Yi(k)Yi(k
′
)

+
1

n

n∑
i=1

∑
j ̸=i

{
[πij(k)− πi(k)πj(k)]

Yi(k)

πi(k)

Yj(k)

πj(k)

+
[
πij(k

′
)− πi(k

′
)πj(k

′
)
] Yi(k

′
)

πi(k
′)

Yj(k
′
)

πj(k
′)

}

− 2

n

n∑
i=1

∑
j ̸=i

{[
πij(k, k

′
)− πi(k)πj(k

′
)
] Yi(k)

πi(k)

Yj(k
′
)

πj(k
′)

}

Here πij(k) = P(Hi = k and Hj = k)

Proof of Theorem 19. Note that τ̂k,k
′

=
∑n

i=1 τ̃i where

τ̃i =
1

n

[
1(Hi = k)

πi(k)
Yi(k)−

1(Hi = k
′
)

πi(k
′)

Yi(k
′
)

]

and E [τ̃i] = 1
n

[
Yi(k)− Yi(k

′
)
]
, hence if we let Xi =

√
n(τ̃i − E [τ̃i]), then

√
n(τ̂k,k

′

− τk,k
′

) =∑n
i=1 Xi = S. By Assumption 16 and Assumption 17, we know that Xi = Op(n

−1/2), hence there

exist some constants C1 and C2 such that for sufficiently large n, both

(
n∑

i=1

E
[
X4

i

])1/2

≤ C1n
−1/2

and
n∑

i=1

E|Xi|3 ≤ C2n
−1/2

hold. Moreover, by Assumption 18,

σ2 = Var(
∑
i

Xi) = nVar(τ̂k,k
′

)

is bounded away from 0. Note that Xi is a function of Hi, hence Xi and Xj are not independent if

and only if Hi and Hj are not independent. Since dn = o(n1/4), we know that the maximal degree

of the dependency graph of Xi’s is o(n1/4). Now we apply Lemma 1. Since σ2 is bounded away
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from 0, we get:

RHS of (2.13) = o(n−1/8) + o(1)→ 0

We’re done.

Remark 3. In fact, with the tools in Leung [2022], we can prove this theorem with a weaker condition

on dn: dn = O(log n).

Proof of Example 2. Note that Hi is a function of Wi and Wj ’s for j being a neighbor of i. If Hi

and Hj are dependent, there must be the case that ({i}∪Ni)∩ ({j}∪Nj) is nonempty since we have

the Bernoulli design. Hence, for each fixed unit i, there are at most δn units such that the above

intersection is nonempty.

Proof of Example 4. We use the same reasoning as in the above proof. The only change is that now

we know that each unit is belonged to a group and units in the group are connected. Therefore, for

each fixed unit i, all the units outside the group will not have effect on unit i. As a result, we can

have rn = o(n1/4).

Proof of Example 3. Since we do not have Bernoulli design anymore, there might be the case that

Wi and Wj are dependent, hence except ({i} ∪ Ni) ∩ ({j} ∪ Nj) is nonempty, there is another case

that makes Hi and Hj dependent: a neighbor of i is in the same cluster as a neighbor of j. For this

case, we have at most δncn such j’s for a fixed unit i. Hence, in total, there are at most δ2n + δncn

j’s such that Hi and Hj are dependent.

Proof of Proposition 9. We first prove the first part of the proposition. The proof is based on A.7 in

Aronow and Samii [2017]. To start with, for any (i, j) ∈ {1, · · · , } × {1, · · · , n}, we define eij = 1 if

Hi and Hj are dependent and 0 otherwise. Let aij(Hi, Hj) be the sum of the elements in V̂ar(τ̂k,k
′

)

that incorporate i and j, then

Var
(
V̂ar(τ̂k,k

′

)
)
≤ n−4Var

 n∑
i=1

n∑
j=1

eijaij(Hi, Hj)


= n−4

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

Cov [eijaij(Hi, Hj), eklakl(Hk, Hl)]

Note that Cov [eijaij(Hi, Hj), eklakl(Hk, Hl)] is nonzero if and only if eij = 1, ekl = 1 and at least

one of eik, eil, ejk, ejl is 1. In total, there are at most 4nd3n (i, j, k, l)’s satisfying this condition. And

by Assumption 16 and 17, each covariance term is bounded, so we know that Var
(
V̂ar(τ̂k,k

′

)
)
=

o(n−4 × n× n3/4)→ 0 as n→∞. Then by Chebyshev’s inequality,∣∣∣V̂ar(√nτ̂k,k′

)− E
[
V̂ar(
√
nτ̂k,k

′

)
]∣∣∣ = op(1).
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Since E
[
V̂ar(τ̂k,k

′

)
]
≥ Var(τ̂k,k

′

),

P

(
V̂ar(τ̂k,k

′

)

Var(τ̂k,k
′
)
≥ 1− δ

)
→ 1

for any δ > 0.

Now we can prove the second part of the proposition. We have that

LHS = P

∣∣∣∣∣∣
√
n(τ̂k,k

′
− τk,k

′
)√

Var(
√
nτ̂k,k

′
)

∣∣∣∣∣∣ ≤ z1−α
2√

1− δ

√
V̂ar(

√
nτ̂k,k

′
)

Var(
√
nτ̂k,k

′
)


≥ P

∣∣∣∣∣∣
√
n(τ̂k,k

′
− τk,k

′
)√

Var(
√
nτ̂k,k

′
)

∣∣∣∣∣∣ ≤ z1−α
2√

1− δ

√
V̂ar(

√
nτ̂k,k

′
)

Var(
√
nτ̂k,k

′
)
and

V̂ar(
√
nτ̂k,k

′
)

Var(
√
nτ̂k,k

′
)
≥ 1− δ


≥ P

∣∣∣∣∣∣
√
n(τ̂k,k

′
− τk,k

′
)√

Var(
√
nτ̂k,k

′
)

∣∣∣∣∣∣ ≤ z1−α
2
and

V̂ar(
√
nτ̂k,k

′
)

Var(
√
nτ̂k,k

′
)
≥ 1− δ


= P

∣∣∣∣∣∣
√
n(τ̂k,k

′
− τk,k

′
)√

Var(
√
nτ̂k,k

′
)

∣∣∣∣∣∣ ≤ z1−α
2

− P

∣∣∣∣∣∣
√
n(τ̂k,k

′
− τk,k

′
)√

Var(
√
nτ̂k,k

′
)

∣∣∣∣∣∣ ≤ z1−α
2
and

V̂ar(
√
nτ̂k,k

′
)

Var(
√
nτ̂k,k

′
)
< 1− δ


(2.14)

Now,

(2.14) ≥ P

∣∣∣∣∣∣
√
n(τ̂k,k

′
− τk,k

′
)√

Var(
√
nτ̂k,k

′
)

∣∣∣∣∣∣ ≤ z1−α
2


− P

(
V̂ar(

√
nτ̂k,k

′
)

Var(
√
nτ̂k,k

′
)
< 1− δ

)

= P

∣∣∣∣∣∣
√
n(τ̂k,k

′
− τk,k

′
)√

Var(
√
nτ̂k,k

′
)

∣∣∣∣∣∣ ≤ z1−α
2

− P

(
V̂ar(τ̂k,k

′
)

Var(τ̂k,k
′
)
< 1− δ

)

→ 1− α

as n→∞ by the first part and Theorem 19.
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Proof of Theorem 8. We use a characteristic function argument. We first note that

√
nT (ˆ̄τk,k

′

− τ̄k,k
′

)√
1
T

∑T
t=1 σ

2
n,t

=

√
nT ( 1

T

∑T
t=1 τ̂

k,k
′

t − 1
T

∑T
t=1 τ

k,k
′

t )√
1
T

∑T
t=1 σ

2
n,t

=

√
T 1

T

∑T
t=1

√
n(τ̂k,k

′

t − τk,k
′

t )√
1
T

∑T
t=1 σ

2
n,t

=

1√
T

∑T
t=1 Xn,t√

1
T

∑T
t=1 σ

2
n,t

,

where Xn,t =
√
n(τ̂k,k

′

t − τk,k
′

t ). Now,

E

exp{iλ√nT (ˆ̄τk,k′

− τ̄k,k
′

)√
1
T

∑T
t=1 σ

2
n,t

} (2.15)

= E

exp{iλ 1√
T

∑T
t=1 Xn,t√

1
T

∑T
t=1 σ

2
n,t

}
=

T∏
t=1

E

exp{iλ 1√
T
Xn,t√

1
T

∑T
t=1 σ

2
n,t

}
=

T∏
t=1

E

exp{i λσn,t√∑T
t=1 σ

2
n,t

Xn,t

σn,t

}
=

T∏
t=1

ϕXn,t
σn,t

 λσn,t√∑T
t=1 σ

2
n,t

 (2.16)

The second equality follows from our assumption that assignment vectors are independent across

time and ϕX denotes the characteristic function of a random variable X. Pick ϵ > 0. Now, to

conclude the proof, we note that

ϕXn,t
σn,t

(θ)→ e−
θ2

2

for any t ∈ {1, · · · , T}. Moreover, for each t, the convergence is actually uniform on any bounded

interval. Therefore, for any t ∈ {1, · · · , T},

ϕXn,t
σn,t

(θ)→ e−
θ2

2 uniformly on (0, 1).
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Note that
λσn,t√∑T
t=1 σ

2
n,t

∈ (0, 1),

so for any t, ∃Nt ∈ N such that for any n ≥ Nt,∣∣∣∣∣ϕXn,t
σn,t

 λσn,t√∑T
t=1 σ

2
n,t

− exp

{
− 1

2

λ2σ2
n,t∑T

t=1 σ
2
n,t

}∣∣∣∣∣ = |ϵt|
≤ 1

2K
.

Let N = max{N1, · · · , NT }, then for all n ≥ N , and for all t ∈ {1, · · · , T},

∣∣∣∣∣ϕXn,t
σn,t

 λσn,t√∑T
t=1 σ

2
n,t

− exp

{
− 1

2

λ2σ2
n,t∑T

t=1 σ
2
n,t

}∣∣∣∣∣ = |ϵt| ≤ 1

2K
,

where K is any big number we want. Now,

(2.16) =

T∏
t=1

(
exp

{
− 1

2

λ2σ2
n,t∑T

t=1 σ
2
n,t

}
+ ϵt

)

= exp

{
− 1

2
λ2

}
+R(ϵt),

where R(ϵt) is a remainder term that is the sum of several monomial terms of ϵt’s. Note that

exp

{
− 1

2

λ2σ2
n,t∑T

t=1 σ2
n,t

}
is actually bounded by 1, hence by making K sufficiently large, we can make

R(ϵt) arbitrarily small. Pick such K, then we know that for sufficiently large n,

∣∣∣∣∣E
exp{iλ√nT (ˆ̄τk,k′

− τ̄k,k
′

)√
1
T

∑T
t=1 σ

2
n,t

}− exp

{
− 1

2
λ2

}∣∣∣∣∣ ≤ ϵ.

Hence, by standard characteristic function argument, we complete the proof of the theorem.

To prove Theorem 10, we first state the following version of Lindeberg-Feller central limit theo-

rem.

Lemma 3 (Lindeberg-Feller CLT). Let {kn}n≥1 be a sequence of positive integers increasing to

infinity. For each n, let {Xn,i}1≤i≤kn
is a collection of independent random variables. Let µn,i :=

E(Xn,i) and

s2n :=

kn∑
i=1

Var(Xn,i).
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Suppose that for any ϵ > 0,

lim
n→∞

1

s2n

kn∑
i=1

E
(
(Xn,i − µn,i)

2; |Xn,i − µn,i| ≥ ϵsn
)
= 0. (2.17)

Then the random variable ∑kn

i=1(Xn,i − µn,i)

sn

d−→ N (0, 1)

as n→∞.

Proof of Theorem 10. We first prove the theorem with condition (2.5). We note that
√
nT (ˆ̄τk,k

′

−
τ̄k,k

′

) =
∑T

t=1

√
n
T (τ̂

k,k
′

t − τk,k
′

t ). Let Xn,t =
√

n
T τ̂

k,k
′

t , then µn,t =
√

n
T τ

k,k
′

t , so the numerator is

exactly
∑T

t=1(Xn,t − µn,t). Moreover, note that for any n, Xn,1, · · · , Xn,T are independent by the

pure population interference assumption. Now,

s2n =

T∑
t=1

Var(Xn,t)

=

T∑
t=1

Var

(√
n

T
τ̂k,k

′

t

)

=
1

T

T∑
t=1

Var(
√
nτ̂k,k

′

t )

=
1

T

T∑
t=1

σ2
n,t.

Hence, to finish the proof, we only need to check (2.17) is satisfied. Notice that for any ϵ > 0,

|Xn,t − µn,t| ≥ ϵsn ⇔
∣∣∣∣√ n

T
τ̂k,k

′

t −
√

n

T
τk,k

′

t

∣∣∣∣ ≥ ϵ

√√√√ 1

T

T∑
t=1

σ2
n,t

⇔
∣∣∣∣τ̂k,k′

t − τk,k
′

t

∣∣∣∣ ≥ ϵ

√√√√ 1

n

T∑
t=1

σ2
n,t

By Assumption 18, σ2
n,t ≥ c for some c > 0 and for all n large. Hence

ϵ

√√√√ 1

n

T∑
t=1

σ2
n,t ≥ ϵ

√
T

n
c→∞.

Note that by Assumptions 16 and 17,

∣∣∣∣τ̂k,k′

t − τk,k
′

t

∣∣∣∣ is uniformly bounded. Hence for sufficiently
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large n,

∣∣∣∣τ̂k,k′

t − τk,k
′

t

∣∣∣∣ < ϵ
√

1
n

∑T
t=1 σ

2
n,t for all t. Therefore, for sufficiently large n,

1

s2n

T∑
t=1

E
(
(Xn,t − µn,t)

2; |Xn,t − µn,t| ≥ ϵsn
)
= 0.

As a result, (2.17) is satisfied. We’re done. The proof of this theorem with condition (2.6) is exactly

the same as in single time step case once we notice that the numerator is just a sum of nT mean 0

dependent random variables.

To prove Theorem 9, we need the following version of Lyapunov central limit theorem.

Lemma 4 (Lyapunov CLT). Let {Xn}∞n=1 be a sequence of independent random variables. Let

µi := E(Xi) and

s2n =

n∑
i=1

Var(Xi) > 0.

If for some δ > 0,

lim
n→∞

1

s2+δ
n

n∑
i=1

E|Xi − µi|2+δ = 0, (2.18)

then the random variable ∑n
i=1(Xi − µi)

sn

d−→ N (0, 1)

Proof of Theorem 9. This time, we let Xt =
√

n
T τ̂

k,k
′

t then the numerator is
∑T

t=1(Xt − µt). Since

we have pure population interference, {Xt}∞t=1 are independent. Now,

s2T =

T∑
t=1

Var(Xt)

=
1

T

T∑
t=1

σ2
n,t.

Hence, we only need to check (2.18). We have that

lim
T→∞

1

s2+δ
T

T∑
t=1

E|Xt − µt|2+δ

= lim
T→∞

1

s2+δ
T

( n
T

)1+ δ
2

T∑
t=1

E
∣∣∣∣τ̂k,k′

t − τk,k
′

t

∣∣∣∣2+δ



2.7. APPENDIX 40

Now, by Assumptions 16 and 17, ∃M > 0 such that

∣∣∣∣τ̂k,k′

t − τk,k
′

t

∣∣∣∣ ≤M for all t. Hence,

1

s2+δ
T

( n
T

)1+ δ
2

T∑
t=1

E
∣∣∣∣τ̂k,k′

t − τk,k
′

t

∣∣∣∣2+δ

≤ 1

s2+δ
T

( n
T

)1+ δ
2

TM2+δ

=
1

s2+δ
T

n1+ δ
2

T
M2+δ

If T →∞, 1

s2+δ
T

n1+ δ
2

T M2+δ → 0. Therefore, (2.18) is satisfied. We’re done.

Proof of Proposition 2. Now we can prove the second part of the proposition. We have that

LHS = P

∣∣∣∣∣∣
√
nT (ˆ̄τk,k

′

− τ̄k,k
′

)√
1
T

∑T
t=1 Var(

√
nτ̂k,k

′

t )

∣∣∣∣∣∣ ≤ z1−α
2√

1− δ

√√√√ 1
T

∑T
t=1 V̂ar(

√
nτ̂k,k

′

t )

1
T

∑T
t=1 Var(

√
nτ̂k,k

′

t )


≥ P

∣∣∣∣∣∣
√
nT (ˆ̄τk,k

′

− τ̄k,k
′

)√
1
T

∑T
t=1 Var(

√
nτ̂k,k

′

t )

∣∣∣∣∣∣ ≤ z1−α
2√

1− δ

√√√√ 1
T

∑T
t=1 V̂ar(

√
nτ̂k,k

′

t )

1
T

∑T
t=1 Var(

√
nτ̂k,k

′

t )
and

1
T

∑T
t=1 V̂ar(τ̂

k,k
′

t )

1
T

∑T
t=1 Var(τ̂

k,k′

t )
≥ 1− δ


≥ P

∣∣∣∣∣∣
√
nT (ˆ̄τk,k

′

− τ̄k,k
′

)√
1
T

∑T
t=1 Var(

√
nτ̂k,k

′

t )

∣∣∣∣∣∣ ≤ z1−α
2
and

1
T

∑T
t=1 V̂ar(τ̂

k,k
′

t )

1
T

∑T
t=1 Var(τ̂

k,k′

t )
≥ 1− δ

 (2.19)

Furthermore,

(2.19) = P

∣∣∣∣∣∣
√
nT (ˆ̄τk,k

′

− τ̄k,k
′

)√
1
T

∑T
t=1 Var(

√
nτ̂k,k

′

t )

∣∣∣∣∣∣ ≤ z1−α
2


− P

∣∣∣∣∣∣
√
nT (ˆ̄τk,k

′

− τ̄k,k
′

)√
1
T

∑T
t=1 Var(

√
nτ̂k,k

′

t )

∣∣∣∣∣∣ ≤ z1−α
2
and

1
T

∑T
t=1 V̂ar(τ̂

k,k
′

t )

1
T

∑T
t=1 Var(τ̂

k,k′

t )
< 1− δ


≥ P

∣∣∣∣∣∣
√
nT (ˆ̄τk,k

′

− τ̄k,k
′

)√
1
T

∑T
t=1 Var(

√
nτ̂k,k

′

t )

∣∣∣∣∣∣ ≤ z1−α
2

− P

 1
T

∑T
t=1 V̂ar(τ̂

k,k
′

t )

1
T

∑T
t=1 Var(τ̂

k,k′

t )
< 1− δ



So if we can show P
(

1
T

∑T
t=1 V̂ar(τ̂k,k

′

t )

1
T

∑T
t=1 Var(τ̂k,k

′
t )

< 1− δ

)
→ 0 then we are done. Notice that

Var

(
1

T

T∑
t=1

V̂ar(τ̂k,k
′

t )

)
=

1

T 2

T∑
t=1

Var

(
V̂ar(τ̂k,k

′

t )

)
. (2.20)

If T is fixed (i.e., Theorem 8 holds), then by what we have in Proposition 9, we immediately have
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that (2.20) → 0 and we are done. Now suppose Theorem 10 holds. Recall that

Var
(
V̂ar(τ̂k,k

′

)
)
≤ n−4

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

Cov [eijaij(Hi, Hj),

eklakl(Hk, Hl)] ,

which implies that Var

(
V̂ar(τ̂k,k

′

t )

)
is uniformly bounded by a constant M by Assumption 16 and

17. So

1

T 2

T∑
t=1

Var

(
V̂ar(τ̂k,k

′

t )

)
≤ 1

T 2

T∑
t=1

M =
M

T
→ 0

as T → 0. So in the regime where both n and T go to infinity (i.e., Theorem 10 holds) or T goes to

infinity (i.e., Theorem 9 holds), (2.20) → 0 and we are done.

Proof of Theorem 12. This should be exactly the same as our proof of Theorem 19.

Proof of Proposition 3.

|E[τ̂ ct ]− τTE
t | = |E[ατ̂TE

t + (1− α)τ̂TE
t−1]− τTE

t |

= |ατTE
t + (1− α)τTE

t−1 − τTE
t |

= |(1− α)(τTE
t−1 − τTE

t )|

= (1− α)|τTE
t−1 − τTE

t |

The second equality follows from unbiasedness of τ̂TE
t and τ̂TE

t−1. To further bound the bias, we need

to bound |τTE
t−1 − τTE

t |. We do this below.

|τTE
t−1 − τTE

t | =
∣∣∣∣
(
1

n

n∑
i=1

Yi,t(h
1
i )−

1

n

n∑
i=1

Yi,t(h
0
i )

)
−

(
1

n

n∑
i=1

Yi,t−1(h
1
i )−

1

n

n∑
i=1

Yi,t−1(h
0
i )

)∣∣∣∣
=

∣∣∣∣ 1n
n∑

i=1

(Yi,t(h
1
i )− Yi,t−1(h

1
i ))−

1

n

n∑
i=1

(Yi,t(h
0
i )− Yi,t−1(h

0
i ))

∣∣∣∣
≤ 1

n

n∑
i=1

|Yi,t(h
1
i )− Yi,t−1(h

1
i )|+

1

n

n∑
i=1

|Yi,t(h
0
i )− Yi,t−1(h

0
i )|

≤ 2ϵ,

by our ϵ-weak-stability assumption. Hence,

|E[τ̂ ct ]− τTE
t | ≤ 2(1− α)ϵ.
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Remark 4. Note that following the exact derivation, we can know that

|τTE
t − τTE

t′
| ≤ 2|t− t

′
|ϵ (2.21)

Proposition 10 (Variance and Covariance of Horvitz-Thompson Type Estimators). For each i ∈
{1, · · · , n}, t ∈ {1, · · · , T}, we let P(Hi,t = h1

i ) = π1
i,t, P(Hi,t = h0

i ) = π0
i,t, P(Hj,t = h1

j ) = π1
j,t

and P(Hj,t = h0
j ) = π0

j,t. Moreover, for each i ̸= j and t, we let P(Hi,t = h1
i , Hj,t = h1

j ) = π1,1
i,j,t,

P(Hi,t = h0
i , Hj,t = h1

j ) = π0,1
i,j,t, P(Hi,t = h1

i , Hj,t = h0
j ) = π1,0

i,j,t and P(Hi,t = h0
i , Hj,t = h0

j ) = π0,0
i,j,t,

then

V ar(τ̂TE
t ) =

1

n2

n∑
i=1

[
Y 2
i,t(h

1
i )(1− π1

i,t)

π1
i,t

+
Y 2
i,t(h

0
i )(1− π0

i,t)

π0
i,t

+ 2Yi,t(h
1
i )Yi,t(h

0
i )

]

+
2

n2

∑
1≤i<j≤n

[
Yi,t(h

1
i )Yj,t(h

1
j )(π

1,1
i,j,t − π1

i,tπ
1
j,t)

π1
i,tπ

1
j,t

−
Yi,t(h

0
i )Yj,t(h

1
j )(π

0,1
i,j,t − π0

i,tπ
1
j,t)

π0
i,tπ

1
j,t

−
Yi,t(h

1
i )Yj,t(h

0
j )(π

1,0
i,j,t − π1

i,tπ
0
j,t)

π1
i,tπ

0
j,t

+
Yi,t(h

0
i )Yj,t(h

0
j )(π

0,0
i,j,t − π0

i,tπ
0
j,t)

π0
i,tπ

0
j,t

] (2.22)

As for Cov(τ̂TE
t , τ̂TE

t′
), if we let P(Hi,t = h1

i , Hi,t′ = h1
i ) = π1,1

i,t,t′
, P(Hi,t = h0

i , Hi,t′ = h1
i ) = π0,1

i,t,t′
,

P(Hi,t = h1
i , Hi,t′ = h0

i ) = π1,0

i,t,t′
, P(Hi,t = h0

i , Hi,t′ = h0
i ) = π0,0

i,t,t′
and P(Hi,t = h1

i , Hj,t′ = h1
j ) =

π1,1

i,t,j,t′
, P(Hi,t = h0

i , Hj,t′ = h1
j ) = π0,1

i,t,j,t′
, P(Hi,t = h1

i , Hj,t′ = h0
j ) = π1,0

i,t,j,t′
, P(Hi,t = h0

i , Hj,t′ =

h0
j ) = π0,0

i,t,j,t′
, then we have the following expression for Cov(τ̂TE

t , τ̂TE
t′

):

1

n2

n∑
i=1

Yi,t(h
1
i )Yi,t

′ (h1
i )(π

1,1

i,t,t
′ − π1

i,tπ
1
i,t

′ )

π1
i,tπ

1
i,t

′
−

Yi,t(h
0
i )Yi,t

′ (h1
i )(π

0,1

i,t,t
′ − π0

i,tπ
1
i,t

′ )

π0
i,tπ

1
i,t

′

−
Yi,t(h

1
i )Yi,t

′ (h0
i )(π

1,0

i,t,t
′ − π1

i,tπ
0
i,t

′ )

π1
i,tπ

0
i,t

′
+

Yi,t(h
0
i )Yi,t

′ (h0
i )(π

0,0

i,t,t
′ − π0

i,tπ
0
i,t

′ )

π0
i,tπ

0
i,t

′


+

2

n2

∑
1≤i<j≤n

Yi,t(h
1
i )Yj,t

′ (h1
j )(π

1,1

i,t,j,t
′ − π1

i,tπ
1
j,t

′ )

π1
i,tπ

1
j,t

′
−

Yi,t(h
0
i )Yj,t

′ (h1
j )(π

0,1

i,t,j,t
′ − π0

i,tπ
1
j,t

′ )

π0
i,tπ

1
j,t

′

−
Yi,t(h

1
i )Yj,t

′ (h0
j )(π

1,0

i,t,j,t
′ − π1

i,tπ
0
j,t

′ )

π1
i,tπ

0
j,t

′
+

Yi,t(h
0
i )Yj,t

′ (h0
j )(π

0,0

i,t,j,t
′ − π0

i,tπ
0
j,t

′ )

π0
i,tπ

0
j,t

′

 (2.23)

Proof of Proposition 10. This can be done by direct calculations.

Proof of Proposition 4. We’d like to have reduction in MSE by using τ̂ ct . By the bias-variance

decomposition and note that τ̂TE
t is unbiased, this boils down to

V ar(τ̂ ct ) + |E[τ̂ ct ]− τTE
t |2 ≤ V ar(τ̂TE

t )
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By Proposition 3, it suffices to have

V ar(τ̂ ct ) + 4(1− α)2ϵ2 ≤ V ar(τ̂TE
t ),

which is further equivalent to

α2V ar(τ̂TE
t ) + (1− α)2V ar(τ̂TE

t−1)

+2α(1− α)Cov(τ̂TE
t , τ̂TE

t−1) + 4(1− α)2ϵ2

≤ V ar(τ̂TE
t )

(2.24)

Rewrite (2.24), we have

(
4ϵ2 + V ar(τ̂TE

t ) + V ar(τ̂TE
t−1)− 2Cov(τ̂TE

t , τ̂TE
t−1)

)
α2

−
(
8ϵ2 + 2V ar(τ̂TE

t−1)− 2Cov(τ̂TE
t , τ̂TE

t−1)
)
α

+
(
4ϵ2 + V ar(τ̂TE

t−1)− V ar(τ̂TE
t )

)
≤ 0 (2.25)

Now we look at the left hand side of (2.25), which is quadratic in α. To ease notations, let A =

V ar(τ̂TE
t ), B = V ar(τ̂TE

t−1) and C = Cov(τ̂TE
t , τ̂TE

t−1). It’s easy to see that the left hand side achieves

its minimum at α = δ = 1 − 2(A−C)
8ϵ2+2A+2B−4C and is 0 at α = 1. So if we have δ < 1, then for some

α ∈ (0, 1), we have reduction in MSE. Moreover, if δ < 1
2 , we then know that for α = 1

2 , we also

have smaller MSE by the property of quadratic functions. And simple algebra shows that δ < 1
2 is

equivalent to A−B > 4ϵ2.
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Proposition 11 (Estimators of variance). We define two estimators of the variance:

V̂ ar
u
(τ̂TE

t ) =
1

n2

n∑
i=1

[
1(Hi,t = h1

i )(1− π1
i,t)

(
Yi,t

π1
i,t

)2

+ 1(Hi,t = h0
i )(1− π0

i,t)

(
Yi,t

π0
i,t

)2

+
Y 2
i,t

π1
i,t

1(Hi,t = h1
i ) +

Y 2
i,t

π0
i,t

1(Hi,t = h0
i )

]

+
2

n2

∑
1≤i<j≤n

[
1(π1,1

i,j,t ̸= 0)1(Hi,t = h1
i )1(Hj,t = h1

j )
(π1,1

i,j,t − π1
i,tπ

1
j,t)Yi,tYj,t

π1
i,tπ

1
j,tπ

1,1
i,j,t

−

(
1(π0,1

i,j,t ̸= 0)1(Hi,t = h0
i )1(Hj,t = h1

j )
(π0,1

i,j,t − π0
i,tπ

1
j,t)Yi,tYj,t

π0
i,tπ

1
j,tπ

0,1
i,j,t

−1(π0,1
i,j,t = 0)

(
1(Hi,t = h0

i )Y
2
i,t

2π0
i,t

+
1(Hj,t = h1

j )Y
2
j,t

2π1
j,t

))

−

(
1(π1,0

i,j,t ̸= 0)1(Hi,t = h1
i )1(Hj,t = h0

j )×
(π1,0

i,j,t − π1
i,tπ

0
j,t)Yi,tYj,t

π1
i,tπ

0
j,tπ

1,0
i,j,t

−1(π1,0
i,j,t = 0)

(
1(Hi,t = h1

i )Y
2
i,t

2π1
i,t

+
1(Hj,t = h0

j )Y
2
j,t

2π0
j,t

))

+1(π0,0
i,j,t ̸= 0)

1(Hi,t = h0
i )1(Hj,t = h0

j )(π
0,0
i,j,t − π0

i,tπ
0
j,t)Yi,tYj,t

π0
i,tπ

0
j,tπ

0,0
i,j,t

]
(2.26)

and

V̂ ar
d
(τ̂TE

t ) =
1

n2

n∑
i=1

[
1(Hi,t = h1

i )(1− π1
i,t)

(
Yi,t

π1
i,t

)2

+ 1(Hi,t = h0
i )(1− π0

i,t)

(
Yi,t

π0
i,t

)2
]

+
2

n2

∑
1≤i<j≤n

[(
1(π1,1

i,j,t ̸= 0)
1(Hi,t = h1

i )1(Hj,t = h1
j )(π

1,1
i,j,t − π1

i,tπ
1
j,t)Yi,tYj,t

π1
i,tπ

1
j,tπ

1,1
i,j,t

−1(π1,1
i,j,t = 0)

(
1(Hi,t = h1

i )Y
2
i,t

2π1
i,t

+
1(Hj,t = h1

j )Y
2
j,t

2π1
j,t

))
−1(π0,1

i,j,t ̸= 0)
1(Hi,t = h0

i )1(Hj,t = h1
j )(π

0,1
i,j,t − π0

i,tπ
1
j,t)Yi,tYj,t

π0
i,tπ

1
j,tπ

0,1
i,j,t

−1(π1,0
i,j,t ̸= 0)

1(Hi,t = h1
i )1(Hj,t = h0

j )(π
1,0
i,j,t − π1

i,tπ
0
j,t)Yi,tYj,t

π1
i,tπ

0
j,tπ

1,0
i,j,t

+

(
1(π0,0

i,j,t ̸= 0)
1(Hi,t = h0

i )1(Hj,t = h0
j )(π

0,0
i,j,t − π0

i,tπ
0
j,t)Yi,tYj,t

π0
i,tπ

0
j,tπ

0,0
i,j,t

−1(π0,0
i,j,t = 0)

(
1(Hi,t = h0

i )Y
2
i,t

2π0
i,t

+
1(Hj,t = h0

j )Y
2
j,t

2π0
j,t

)]
. (2.27)

Assuming all the potential outcomes are non-negative, we then have that

E
[
V̂ ar

u
(τ̂TE

t )
]
≥ V ar(τ̂TE

t )
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and

E
[
V̂ ar

d
(τ̂TE

t )
]
≤ V ar(τ̂TE

t ).

Proposition 12 (Estimator of the covariance). We have the following unbiased estimator of Cov(τ̂TE
t , τ̂TE

t′
):

Ĉov(τ̂TE
t , τ̂TE

t
′ ) =

1

n2

n∑
i=1

1(Hi,t = h1
i )1(Hi,t

′ = h1
i )Yi,tYi,t

′ (π1,1

i,t,t
′ − π1

i,tπ
1
i,t

′ )

π1,1

i,t,t
′π1

i,tπ
1
i,t

′

−
1(Hi,t = h0

i )1(Hi,t
′ = h1

i )Yi,tYi,t
′ (π0,1

i,t,t
′ − π0

i,tπ
1
i,t

′ )

π0,1

i,t,t
′π0

i,tπ
1
i,t

′

−
1(Hi,t = h1

i )1(Hi,t
′ = h0

i )Yi,tYi,t
′ (π1,0

i,t,t
′ − π1

i,tπ
0
i,t

′ )

π1,0

i,t,t
′π1

i,tπ
0
i,t

′

+
1(Hi,t = h0

i )1(Hi,t
′ = h0

i )Yi,tYi,t
′ (π0,0

i,t,t
′ − π0

i,tπ
0
i,t

′ )

π0,0

i,t,t
′π0

i,tπ
0
i,t

′


+

2

n2

∑
1≤i<j≤n

1(Hi,t = h1
i )1(Hj,t

′ = h1
j )Yi,tYj,t

′ (π1,1

i,t,j,t
′ − π1

i,tπ
1
j,t

′ )

π1,1

i,t,j,t
′π1

i,tπ
1
j,t

′

−
1(Hi,t = h0

i )1(Hj,t
′ = h1

j )Yi,tYj,t
′ (π0,1

i,t,j,t
′ − π0

i,tπ
1
j,t

′ )

π0,1

i,t,j,t
′π0

i,tπ
1
j,t

′

−
1(Hi,t = h1

i )1(Hj,t
′ = h0

j )Yi,tYj,t
′ (π1,0

i,t,j,t
′ − π1

i,tπ
0
j,t

′ )

π1,0

i,t,j,t
′π1

i,tπ
0
j,t

′

+
1(Hi,t = h0

i )1(Hj,t
′ = h0

j )Yi,tYj,t
′ (π0,0

i,t,j,t
′ − π0

i,tπ
0
j,t

′ )

π0,0

i,t,j,t
′π0

i,tπ
0
j,t

′


Proving Theorem 14 relies on results in m-dependence central limit theorem. We need the

following result as a lemma.

Lemma 5. Let {Xn,i} be a triangular array of mean zero random variables. For each n = 1, 2, · · ·
let d = dn, and suppose Xn,1, · · · , Xn,d is an m-dependent sequence of random variables for some

m ∈ N. Define

B2
n,k,a = Var

(
a+k−1∑
i=a

Xn,i

)
, B2

n = Bn,d,1 = Var

(
d∑

i=1

Xn,i

)
.

Assume the following conditions hold. For some δ > 0, −1 ≤ γ < 1 and g = gn > 2m is such that
m
g → 0:

E|Xn,i|2+δ ≤ ∆n for all i, (2.28)

B2
n,k,a/(k

1+γ) ≤ Kn for all a and for all k ≥ m, (2.29)

B2
n/(dm

γ) ≥ Ln, (2.30)

Kn

Ln
· m
g
→ 0, (2.31)
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Kn

Ln
·
(
m

g

)(1−γ)/2

→ 0, (2.32)

∆nL
−(2+δ)/2
n gδ/2+(1−γ)(2+δ)/2d−δ/2

(
m

g

)(1−γ)(2+δ)/2

→ 0. (2.33)

Then, B−1
n (Xn,1 + · · ·Xn,d)

d−→ N (0, 1).

Proof. This is essentially Theorem 2.1 in Romano andWolf [2000]. We replace the original conditions

4, 5 and 6 by the last three conditions. In fact, the last three conditions are needed to establish

the theorem and the conditions 4, 5 and 6 in Theorem 2.1 in Romano and Wolf [2000] are sufficient

conditions.

Now, we are ready to prove Theorem 14.

Proof of Theorem 14. We define τ̃i,t =
1(Hi,t=k)
P(Hi,t=k)Yi,t−1(Hi,t=k′)

P(Hi,t=k′)Yi,t =
1(Hi,t=k)
P(Hi,t=k)Yi,t(k)−1(Hi,t=k′)

P(Hi,t=k′)Yi,t(k
′).

Then the ATEC can be written as

ˆ̄τk,k
′

=

n∑
i=1

T∑
t=1

1

nT
τ̃i,t.

Similarly, we define τi,t = Yi,t(k)− Yi,t(k
′), which is the true individual exposure contrast. Now,

√
nT (ˆ̄τk,k

′

− τ̄k,k
′

) =

n∑
i=1

T∑
t=1

1√
nT

(τ̃i,t − τi,t).

To proceed, we letXn,i,t =
1√
nT

(τ̃i,t−τi,t). We view {Xn,i,t} as a single sequence of random variables

by enumerating Xn,i,t following the order Xn,1,1, · · · , Xn,1,T , Xn,2,1, · · · , Xn,2,T , · · · , Xn,n,T . Using

the language in the lemma, d = nT . Since {Hi,t}ni=1 is a sequence of s-dependent random variables

andXn,i,t is a function ofHi,t, we know that {Xn,i,t} is a sT -dependent sequence of random variables.

In other words, m = sT in the above lemma. Note that |Xn,i,t| ≤ C1√
nT

by uniform boundedness of

potential outcomes. Hence, for any δ > 0, ∆n = C2(nT )
−1−δ/2. Now, we calculate B2

n,k,a and B2
n.

We start with B2
n,k,a. For all (i1, t1) and k ≥ m, let (i2, t2) be the index such that when we order
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X’s there are exactly k indices from (i1, t1) to (i2, t2).

B2
n,k,a = Var

(i,t)=(i2,t2)∑
(i,t)=(i1,t1)

Xn,i,t


=

1

nT
Var

(i,t)=(i2,t2)∑
(i,t)=(i1,t1)

τ̃i,t


=

1

nT

(i,t)=(i2,t2)∑
(i,t)=(i1,t1)

Var(τ̃i,t) + 2
∑

(u,v) ̸=(p,q)

Cov(τ̃u,v, τ̃p,q)


Since k ≥ m = sT , we know that at most mk covariance terms are non-zero. Given uniform

boundedness of potential outcomes and overlap, all the variance and covariance terms are upper

bounded by constants M1 > 0 and M2 > 0 respectively. Hence,

B2
n,k,a ≤

1

nT
(kM1 + 2mkM2) ≤M3

mk

nT
= M3

sk

n
.

Therefore,

B2
n,k,a/k ≤M3

sk

n
/k = M3

s

n
= Kn.

Now we look at B2
n. By Assumption 13, Var(

√
nT ˆ̄τk,k

′

) ≥ ϵ > 0, hence, for sufficiently large n,

B2
n = Var(

√
nT ˆ̄τk,k

′

) ≥ ϵ > 0,

and

B2
n/d = B2

n/(nT ) ≥ ϵ/(nT ) = Ln.

We let γ = 0, δ = 2. Pick g = gn = s3T 3nα. With such g, m/g obviously goes to 0. Now,

Kn

Ln
· m
g

= ϵM3sT ·
1

s2T 2nα
→ 0,

Kn

Ln
·
(
m

g

)(1−γ)/2

= ϵM3sT ·
1

sTn0.5α
→ 0,

∆nL
−(2+δ)/2
n gδ/2+(1−γ)(2+δ)/2d−δ/2

(
m

g

)(1−γ)(2+δ)/2

= C2(nT )
−1−δ/2ϵ−(2+δ)/2(nT )(2+δ)/2gδ/2(nT )−δ/2(sT )1+δ/2

= C4gs
2T/n when δ = 2

= C4s
5T 4nα/n.
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Since s5T 4 = o(n1−α), s5T 4nα = o(n) and hence ∆nL
−(2+δ)/2
n gδ/2+(1−γ)(2+δ)/2d−δ/2

(
m
g

)(1−γ)(2+δ)/2

=

o(1). Having checked all the conditions, by Lemma 5, we are done.

Proof of Theorem 15. As in the above proof, we check the six conditions in Lemma 5 are satisfied

with γ = 0 and δ = 2. Note that since now Xn,i,t and Xn,j,t are correlated if and only if i and j are

in the same group, we can reorder Xn,i,t’s as follows:

Xn,1,1, · · · , Xn,r,1, Xn,1,2, · · · , Xn,r,2, · · · , Xn,r,T , Xn,r+1,1, · · · , Xn,nr,T .

Now, this sequence is actually (2r)-dependent, i.e., m = 2r, s = r. Then

Kn = M4/(nT ), Ln = ϵ/(nrT ).

Hence Kn/Ln = M5r. Pick g = gn such that g → ∞ and g = (nT )3/4. Then with r = o((nT )
1
4 ),

r2/g → 0 and r3/g → 0.
Kn

Ln
· m
g

= M5r ·
2r

g
→ 0,

Kn

Ln
·
(
m

g

)(1−γ)/2

= M5r ·
√

2r

g
→ 0

and

∆nL
−(2+δ)/2
n gδ/2+(1−γ)(2+δ)/2d−δ/2

(
m

g

)(1−γ)(2+δ)/2

= M6g
3(nrT )−1

(
r

g

)2

= M6rg/(nT )

= o(nT )/(nT )→ 0

Hence all the conditions are satisfied. It is also easy to see that instead of just 2 time steps, any

finite p time steps would work.

Proof of Proposition 8. Let Xn,t =
√

nr
T (τ̂k,k

′

t − τk,k
′

t ). The key ingredients are the following two
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expressions:

Var(Xn,t) =
1

nrT

[
n∑

l=1

r∑
q=1

(22r − 1)Y(l,q),t(k)
2

+

n∑
l=1

r∑
q=1

(22r − 1)Y(l,q),t(k
′
)2 + 2

n∑
l=1

r∑
q=1

Y(l,q),t(k)Y(l,q),t(k
′
)

+

n∑
l=1

r∑
q1=1

∑
q2 ̸=q1

(
(22r − 1)Y(l,q1),t(k)Y(l,q2),t(k) + (22r − 1)Y(l,q1),t(k

′
)Y(l,q2),t(k

′
)
)

+2

n∑
l=1

r∑
q1=1

∑
q2 ̸=q1

Y(l,q1),t(k)Y(l,q2),t(k
′
)

 (2.34)

and

Cov(Xn,t, Xn,t+1) =
1

nrT

n∑
l=1

r∑
q1=1

r∑
q2=1(

(2r − 1)Y(l,q1),t(k)Y(l,q2),t+1(k)

+(2r − 1)Y(l,q1),t(k
′
)Y(l,q2),t+1(k

′
)

+ Y(l,q1),t(k
′
)Y(l,q2),t+1(k) + Y(l,q1),t(k)Y(l,q2),t+1(k

′
)
)

(2.35)

We have that

B2
n =

T∑
t=1

Var(Xn,t) + 2

T−1∑
t=1

Cov(Xn,t, Xn,t+1)

Plugging in (2.34) and (2.35), we have the expression of B2
n. The estimator is obtained by replacing

the non-identifiable terms by corresponding upper bound.

2.7.3 k−steps convex estimator

The approach we have described in Section 2.2.2 naturally extends to using the k− 1 previous time

steps, yielding the weighted combination estimator:

τ̂ ct = α1τ̂
TE
t−k+1 + · · ·+ αk τ̂

TE
t ,

which exhibits the following absolute bias bound:

Proposition 13 (Bound on the bias of τ̂ ct ).

|E[τ̂ ct ]− τTE
t | ≤ 2 [(k − 1)α1 + (k − 2)α2 + · · ·+ αk−1] ϵ
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As in the previous section, we can estimate α1, · · · , αk by solving the following convex optimiza-

tion problem:

argmin
α1,··· ,αk

α2
1V̂ar(τ̂

TE
t−k+1) + · · ·+ α2

kV̂ar(τ̂
TE
t )

+ 4 [(k − 1)α1 + · · ·+ αk−1]
2
ϵ2

subject to α1 + · · ·+ αk = 1,

where V̂ar(τ̂TE
t−k+1), · · · , V̂ar(τ̂TE

t ) are estimators of the associated variance terms, and are provided

in Appendix 2.7.2. This then suggests the following plug-in estimator:

τ̂ ct = α̂1τ̂
TE
t−k+1 + · · ·+ α̂k τ̂

TE
t .

We can assert stronger control over the bias of τ̂ c by incorporating an additional constraint to the

optimization problem:

argmin
α1,··· ,αk

α2
1V̂ar(τ̂

TE
t−k+1) + · · ·+ α2

kV̂ar(τ̂
TE
t )

+ 4 [(k − 1)α1 + · · ·+ αk−1]
2
ϵ2

subject to α1 + · · ·+ αk = 1,

2 [(k − 1)α1 + (k − 2)α2 + · · ·+ αk−1] ϵ ≤ δ.

Numerical solutions for either optimization problem are straightforward to obtain using standard

numerical solvers. Variance estimator and confidence interval of τTE
t can be constructed in exactly

the same way as in the case k = 2.

Proof of Proposition 13.

|E[τ̂ ct ]− τt|

= |α1τ
TE
t−k+1 + · · ·+ αkτ

TE
t − τTE

t |

= |α1τ
TE
t−k+1 + · · ·+ αk−1τ

TE
t−1 − (1− αk)τ

TE
t |

= |α1τ
TE
t−k+1 + · · ·+ αk−1τ

TE
t−1 − (α1 + · · ·+ αk−1)τ

TE
t |

= |α1(τ
TE
t−k+1 − τTE

t ) + · · ·+ αk−1(τ
TE
t−1 − τTE

t )|

≤ α1|τTE
t−k+1 − τTE

t |+ · · ·+ αk−1|τTE
t−1 − τTE

t |

≤ 2α1(k − 1)ϵ+ · · ·+ 2αk−1ϵ

= 2 [(k − 1)α1 + · · ·+ αk−1] ϵ
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We first give the optimization problem for the general case that assignments may be correlated

across time:

argmin
α1,··· ,αk

α2
1V̂ar(τ̂

TE
t−k+1) + · · ·+ α2

kV̂ar(τ̂
TE
t )

+ 2αiαj

∑
1≤i<j≤k

Ĉov(τ̂TE
t−k+i, τ̂

TE
t−k+j)

+ 4 [(k − 1)α1 + · · ·+ αk−1]
2
ϵ2

subject to α1 + · · ·+ αk = 1,

where V̂ar(τ̂TE
t−k+1), · · · , V̂ar(τ̂TE

t ) and Ĉov(τ̂TE
t−k+i, τ̂

TE
t−k+j) can be any estimator in Proposition 11

and 12. Moreover, suppose that the assignments are independent across time, we know that

Cov(τ̂TE
t−k+i, τ̂

TE
t−k+j) = 0, hence we have an even simpler optimization problem as stated in the

main text.

Derivation of the optimization problem. We first calculate the variance.

Var(τ̂ ct ) = Var(α1τ̂
TE
t−k+1 + · · ·+ αk τ̂

TE
t )

= α2
1Var(τ̂

TE
t−k+1) + · · ·+ α2

kVar(τ̂
TE
t )

+ 2αiαj

∑
1≤i<j≤k

Cov(τ̂TE
t−k+i, τ̂

TE
t−k+j)

Suppose we want to have smaller MSE by using τ̂ ct , we need to have

Var(τ̂ ct ) + |E[τ̂ ct ]− τTE
t |2 ≤ Var(τ̂TE

t )

By Proposition 13, it suffices to have

α2
1Var(τ̂

TE
t−k+1) + · · ·+ α2

kVar(τ̂
TE
t )

+ 2αiαj

∑
1≤i<j≤k

Cov(τ̂TE
t−k+i, τ̂

TE
t−k+j)

+ 4 [(k − 1)α1 + · · ·+ αk−1]
2
ϵ2 ≤ Var(τ̂TE

t )

(2.36)

Now, the left hand side of (2.36) is convex in α1, · · · , αk.
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Estimate of ϵ ϵ̂ 1.5ϵ̂ 2ϵ̂ 2.5ϵ̂ 3ϵ̂

RMSE for τ̂TE
20 33.27 33.27 33.27 33.27 33.27

RMSE for τ̂ c20, k = 2 8.93 8.81 8.69 8.55 8.42

RMSE for τ̂ c20, k = 5 5.12 6.20 7.11 7.91 8.64

Table 2.7: Root mean squared errors (RMSE) for τ̂TE
20 , τ̂ c20 with k = 2 and τ̂ c20 with k = 5

2.7.4 Additional simulation results for estimation under stability assump-

tion

Parameters for Erdős-Rényi Model

For the simulation study in Section 2.4.2, we use p = 0.1 for n = 50 and then scale the probability

p accordingly for larger n so that each unit has the same expected number of neighbors.

The effect of estimated stability parameter

Recall that our ϵ̂ is only a lower bound of the true ϵ, hence may underestimate ϵ. To investigate

how our estimate of ϵ affects the results, we fix n = 50 and generate the social network according to

Erdős-Rényi Model with p = 0.1. We generate 500 realizations of assignments and plug in ϵ̂, 1.5ϵ̂,

2ϵ̂, 2.5ϵ̂ and 3ϵ̂ for three kinds of estimators considered above. Table 2.7 shows the results. We see

that the convex combination type estimator with k = 2 is not sensitive to the estimate of ϵ while

the convex combination type estimator with k = 5 is. Even we use 3ϵ̂, two convex combination type

estimators still show better performance in terms of root mean squared error.
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Confidence Interval Network 1 Network 2 Network 3

Gaussian CI with variance estimated by V̂ar
d 27.38 26.62 27.02

Gaussian CI with variance estimated by V̂ar
u

34.04 32.34 33.33

Chebyshev CI with variance estimated by V̂ar
d 62.47 60.75 61.66

Chebyshev CI with variance estimated by V̂ar
u

77.67 73.79 76.04

Table 2.8: Lengths of two approximate confidence intervals for τTE
t with k = 2

Figure 2.5: Root mean squared errors (RMSE) for τ̂TE
20 and τ̂ c

The effect of the number of time steps

Finally, we investigate how k affects the results. We generate three different social networks, and

for each one, we plot the root mean squared errors of using 1 time step (i.e., the Horvitz-Thompson

type estimator) to 20 time steps (i.e., we use all time steps to estimate the total effect at time step

20). From Figure 2.5 we can see that the RMSE curves stay flat after a certain value of k. Hence,

we do not need to worry about using too many time steps as the optimization problem intrinsically

pick the right k.
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Lengths of approximate confidence intervals

Table 2.8 shows the average lengths of approximate confidence intervals. As expected, Gaussian

confidence intervals are shorter.

2.7.5 General Framework

In this chapter, we have a two-dimensional indexing set: one dimension for indexing the multiple

units, one dimension for indexing the time. This can be generalized to two arbitrary indices. For

example, each place on earth can be indexed by latitude and longitude. We can talk about causal

inference in this general case.

We start with an arbitrary indexing set A. Corresponding to each element a ∈ A, we have an

assignment wa. Hence, there is an assignment array
¯
w = (wa)a∈A associated with A. For each

element a ∈ A, we associate an exposure mapping fa : Ω(A) → ∆ with it, where Ω(A) represents

all the possible assignment arrays on our indexing set A. Note that although we restrict all the

exposure mappings (fa)a∈A to have the same range, we do not restrict them to have the same

image. We adopt the potential outcome framework and associate each a ∈ A a set of potential

outcomes {Ya(
¯
w)}

¯
w∈Ω(A). Under this general setting, we have the following definition of properly

specified exposures:

Definition 20 (A-Properly Specified Exposures). We say that (fa)a∈A is A-properly specified if

∀a ∈ A, ∀
¯
w,

¯
w

′ ∈ Ω(A), we have

fa(
¯
w) = fa(

¯
w

′
) =⇒ Ya(

¯
w) = Ya(

¯
w

′
)

In the common causal inference literature, such exposure mappings induce interference and thus

quantify our belief of the interference mechanism. On the other hand, properly specified exposure

mappings reduce the number of possible potential outcomes and hence make inference possible. Two

familiar examples are:

Example 5 (Traditional Causal Inference with Interference). This is the setting discussed in Aronow

and Samii [2017]. Under this setting, A = I = {1, · · · , n}, where n is the number of total units in

the experiment.

Example 6 (Time Series Experiments). This is the setting discussed in Bojinov and Shephard [2019].

Under this setting, A = T = {1, · · · , T}, where we have only one unit participating the experiment

and we assign treatment or control to this unit at T time points.

The most general causal estimand we are interested in is the following exposure contrast:

Definition 21 (General Exposure Contrast). For k, k
′ ∈ ∆ and A0 ⊆ A, we define the exposure
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contrast between k and k
′
on A0 as

τk,k′ (A0) =
1

|A0|
∑
a∈A0

(Ya(k)− Ya(k
′
))

We have two remarks here. First, this may not be well-defined for all k and k
′
since the fa’s

are not constrained to have the same image. Second, some choices of A0 do not make sense. We

continue our two examples above here. For the traditional causal inference with interference, we

average over A = I and for time series experiment with one unit, we average over time.

Now, consider the case that A = I1 × I2, i.e., we have a two dimensional indexing set. In this

case, we have two symmetric parts of the problem: fixing i ∈ I1 and do inference on Ai = {i} × I2,
fixing j ∈ I2 and do inference on Aj = I1 × {j}. We define two special interference structures on

two dimensional indexing sets.

Definition 22 (Purely I1-level Interference). ∀t ∈ I2, ∀
¯
w,

¯
w

′ ∈ Ω(I1 × I2), we have

(wi,t)i∈I1
= (w

′

i,t)i∈I1
=⇒ fi,t(

¯
w) = fi,t(

¯
w

′
)

We can define purely I2-level interference similarly. We also have two invariant properties of

exposure mappings.

Definition 23 (I1-invariant Exposure Mappings). We say fi,t, (i, t) ∈ I1×I2 is I1-invariant if ∀t ∈ I2,
∀i, i′ ∈ I1, ∀

¯
w ∈ Ω(I1 × I2),

(wi,t)t∈I2
= (wi′ ,t)t∈I2

=⇒ fi,t(
¯
w) = fi′ ,t(¯

w)

Similarly for I2-invariant exposure mappings.



Chapter 3

Model-Based Regression

Adjustment with Model-Free

Covariates for Network

Interference

3.1 Setup

Consider a randomized experiment on n units where there is a simple undirected graph G = (V, E)
that describes the social network of interactions among n units. The graph G is associated with a

symmetric matrix A ∈ Rn so that Aij = 1 if (i, j) ∈ E and zero otherwise. Let N (k)
i denote the

k-hop neighborhood around each node i ∈ V . We omit the superscript when k = 1 and let di denote

the degree of each node (or equivalently, di = |Ni|). We denote by Wi the random assignment and

xi ∈ X the pre-treatment covariates for unit i. We assume that the experimental population is the

population of interest and hence view pre-treatment covariates as fixed. We only consider binary

treatments but note that extensions to non-binary treatments are straightforward. Throughout, we

use lower case letters with the appropriate subscript for realizations of the random variables and for

non-random quantities.

We work under the Rubin causal model Rubin [1974], Holland [1986], Imbens and Rubin [2015].

For every unit i, we associate it with potential outcomes Yi(w) ∈ R for w ∈ {0, 1}n. We are interested

56
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in the following causal estimand that we call the Global Average Treatment Effect (GATE):

τ =
1

n

n∑
i=1

E[Yi(1)− Yi(0)]. (3.1)

Here 1 denotes the n-dimensional ones vector and similarly for 0. The GATE estimand, also known

as the Total Treatment Effect (TTE) in some work Yu et al. [2022], measures the overall effect of the

intervention on the experimental units. Under SUTVA, the assignments of other units won’t affect

one’s response and hence there are only two potential outcomes per unit, Yi(0) and Yi(1). Under

SUTVA, the GATE is then simply the average treatment effect (ATE). When there is interference

along a network, there may be up to 2n different potential outcomes per unit. In the absence of

further assumptions, it is impossible to observe Yi(1) for some unit i and also observe Yj(0) for any

other unit j.

In this work we take a regression perspective and assume two functions f0 and f1 such that for

each unit i and each assignment vector w ∈ {0, 1}n,

Yi(w) = wif1(i, w, xi, G) + (1− wi)f0(i, w, xi, G) + ϵi, (3.2)

with ϵi’s being exogenous, i.e. E[ϵi|w] = 0. The functions f0 and f1 each take as input the node

label i, the assignment vector w, the covariate vector xi and graph G. This approach uses exposure

mappings Aronow and Samii [2017] as functions that map an assignment vector w and xi to a specific

exposure value so that if two assignment vectors w and w′ induce the same exposure value for a

unit then they have the same value of potential outcome. Since the potential outcomes only depend

on the exposure values, we can view them as a function of exposure values and we can rewrite the

potential outcomes as in (3.2). Given (3.2), since functions f1 and f0 are shared across all units, we

can use the treated units to estimate f1 and control units to estimate f0. Suppose f̂0 and f̂1 are two

estimates of f0 and f1 respectively, then a natural estimator of the GATE would be

τ̂ =
1

n

n∑
i=1

[f̂1(i,1, xi, G)− f̂0(i,0, xi, G)].

Unfortunately, estimation of the GATE will be impossible without any further assumptions on the

structure of the functions f0 and f1
1. To motivate our structural assumptions on f0 and f1, we look

at the following example.

Example 7 (Linear-in-means model). Consider the structural model Manski [1993], Moffit [2001],

Bramoullé et al. [2009]

y = α1+ βÃy + γw + δÃw + ϵ, E[ϵ|w] = 0, (3.3)

1Basse and Airoldi Basse and Airoldi [2018] has a discussion from an inference perspective.
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where y is the n×1 outcome vector, Ã is the degree-normalized adjacency matrix, i.e., Ãij = Aij/di,

w is the assignment vector, and (α, β, γ, δ) are parameters. Bramoullé et al. Bramoullé et al. [2009]

show that under some mild conditions on the coefficients and the graph G, we can rewrite the above

model as

y = α/(1− β)1+ γw + (γβ + δ)

∞∑
j=0

βjÃj+1w +

∞∑
j=0

βjÃj+1ϵ. (3.4)

Note that now the outcome is linear in the assignment vector w as well as {Ãj+1w}∞j=0. Let

f0(i, w, xi, G) = f1(i, w, xi, G) = α/(1− β) + γwi + (γβ + δ)
∑∞

j=0 β
jÃj+1w and notice that

E[
∑∞

j=0 β
jÃj+1ϵ|w] = 0. Thus, the linear-in-means model (3.3) can be written in the form of

(3.2).

While in this example the linear model is infinite-dimensional, the linear structure of (3.4)

motivates us to look at linear models for both f0 and f1. To make it formal, we make the following

definition:

Definition 24 (Linear interference). We say that the model Y = {Yi(w) : w ∈ {0, 1}n, i ∈ [n]}
exhibits linear interference if there exists a function g : [n] × {0, 1}n × X × G → RK and θ0 ∈ RK ,

θ1 ∈ RK such that f0(i, w, xi, G) = θT0 g(i, w, xi, G) and f1(i, w, xi, G) = θT1 g(i, w, xi, G). We call

each coordinate function gj of g a feature of the interference.

Despite the simplicity of linear interference, from a graph perspective it can be shown that

convolutions on graphs can be well-approximated by linear expansion Hammond et al. [2011]. Such

a linear interference assumption is not uncommon Deng et al. [2013], Pouget-Abadie et al. [2019a],

Chin [2019]. Chin Chin [2019] shows how to do inference once we have access to the oracle g while

Pouget-Abadie et al. [2019a] give a testing procedure to detect network interference under linear

interference. Moreover, because we are interested in the quality of our estimated functions f̂0 and f̂1

for (only) w = 0,1, we are effectively attempting generalization. Simple models usually generalize

well Bousquet et al. [2004], von Luxburg and Schölkopf [2011], and thus linear interference provides

credibility of inference without losing flexibility in a world where g can be arbitrarily complex.

Before proceeding, we can simplify (3.2) somewhat. Note that

Yi(w) = wif1(i, w, xi, G) + (1− wi)f0(i, w, xi, G) + ϵi

= wif1(i, w
(i→1), xi, G) + (1− wi)f0(i, w

(i→0), xi, G) + ϵi

= wif̃1(i, w
(−i), xi, G) + (1− wi)f̃0(i, w

(−i), xi, G) + ϵi, (3.5)

where w(i→t) denotes the n−dimensional vector that replaces wi by t and f̃t is a function of i, w(−i),

xi and G only. Therefore, without loss of generality, we assume that the domain of g and hence the

domain of f0 and f1 is [n]× {0, 1}n−1 ×X × G.
From here on, for presentational simplicity we will omit the pre-treatment covariates xi in our

discussion. Extensions to the case of including pre-treatment covariates will be discussed when not
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obvious. As a result, g is a function of the node label i, the assignment vector w and the graph G

only.

We focus on design that satisfies the following uniformity assumption:

Assumption 25 (Uniformity). We assume that Wi’s are independent and ∀i, P(Wi = 1) = pi for

some 0 < pi < 1.

We make this assumption to follow the common practice of using Bernoulli randomization in

network experiments, e.g., Karrer et al. Karrer et al. [2021]. As an alternative, estimates from

designs that accounts for network interference (for example, graph cluster randomization) may suffer

from sizable variance Ugander and Yin [2020]. Hereinafter we assume thatWi’s are i.i.d. Bernoulli(p)

random variables with 0 < p < 1, i.e., we work with data from experiments under a Bernoulli design.

If we know the function g a priori, Chin Chin [2019] provides a complete solution. However, if

we don’t know the function g, then there are three significant challenges, all of which we address

in this work. First, how should we construct g so that the one we construct approximates the true

one? Second, suppose we have many candidate functions then how should we select among them?

Third, even if we have satisfactory answers to the first two questions, how should we do inference?

We will address the first two challenges in the next section and the third challenge later.

3.2 Model-free covariates

Now by (3.5), the function g from Definition 24 takes node label i, w(−i) and G as input and outputs

a K-dimensional vector, what g essentially does is to produce K covariates based on w(−i) and G

for each unit i. In this section, we describe a sequential procedure to generate and select model-

free covariates. A high-level description of our method would be that we generate rich candidate

features based solely on the graph structure as well as the assignment vector and select among these

features based on the observed outcomes. We first give the procedure in Algorithm 2 below and then

explain the steps in more detail. We call the procedure ReFeX-LASSO as it builds on the graph

mining technique ReFeX Henderson et al. [2011] to generate candidate features while using LASSO

Tibshirani [1996] to select features.

ReFeX (Recursive Feature eXtraction) was originally designed to generate features for graph

mining tasks and can be viewed as a recursive algorithm that starts with base features of each node

in the graph and iteratively (i) adds and (ii) prunes features based on aggregations over features

from neighboring nodes. ReFeX can be viewed as a simple early precursor to recent methods for

graph representation learning based on graph convolution networks (GCNs) Hamilton et al. [2017],

Kipf and Welling [2017]. We adopt the feature generation step in ReFeX algorithm, but replace

the feature pruning part of the original algorithm by LASSO, a modification that allows us to more

precisely characterize the features that are available at any given step of the algorithm.

ReFeX has two ingredients—base features and aggregation functions. Given w, {xi}ni=1 and
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Algorithm 2 ReFeX-LASSO

Input: Graph G = (V, E), assignment vector w ∈ {0, 1}n, maximum number of iterations T .
Output: A set of covariates S.
1: Initialize S = {}, active feature set A = {}.
2: For each node/unit i, construct m base features and add m base features to A.
3: for t = 1 to T do
4: Regress y on w and features from S and A using LASSO with no penalty on features from

S.
5: If no feature in A is selected, return S. Otherwise, add selected features from A to S.
6: Recursively construct features by performing aggregations of features in A over neighbors in

1-hop neighborhood.
7: Delete old features in A and add those new features to A.
8: end for
9: Return S.

G, base features are those features that can be constructed by only looking at each node’s 1-hop

neighborhood. They can be arbitrary as long as they satisfy this local look-up constraint. Base

features can be purely graph features like degree, centrality, clustering coefficient, etc. They can

also be pre-treatment covariates xi. Often we would also like to have base features that depend

on not just one input of the function g but features computed from two inputs of g. For example,

features like the number of treated neighbors, which depends on both the assignment vector w as well

as the graph G. Or the average feature value over all neighbors, which depends on the pre-treatment

covariates and G. With ReFeX, the base features are chosen by the analyst. Aggregation functions

are functions that take features from neighboring nodes as inputs and output a single value. Hence,

one aggregation function essentially computes a statistic based on the sample of feature values from

neighbors. The aggregation functions again can be arbitrary and chosen by the analyst. Some

common examples include min, max, sum, mean and variance Henderson et al. [2011].

We are now ready to introduce the ReFeX-LASSO algorithm. The ReFeX-LASSO algorithm

starts with two empty feature sets, the target set S and the active feature set A. The first set S

stores the selected features and features in S will be used for adjusting the GATE estimate. The

active feature set A contains features that were recursively added in the previous step and yet to be

selected. At the beginning of the procedure, we construct base features for each unit i. Equipped

with a set of base features, each time we regress the outcome vector y on features from both set

S and set A using LASSO. The LASSO regularization parameter can be chosen by cross-validation

and hence we do not need extra hyper-parameters of the algorithm. Note that we do not put a

penalty on features in S since they have already been selected and should be kept. The intuition

behind this step is that in general features generated later (pulling information from farther in the

graph) should not be more predictive than features selected previously. Next, depending on the

number of newly selected features, we either terminate the construction and return the current S

or add those selected features to S and proceed with the recursive construction. We then need to
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generate new features and add them to A. To do so, we now perform aggregations on old features

over all neighboring units. Finally, we add those features to A and delete all old features in A.

The maximum number of iterations in Algorithm 2 limits the distance in the graph that we can

pull information from. Although each step only performs aggregations over neighbors in the 1-hop

neighborhood, by repeatedly performing the aggregations we are able to construct features that are

informative for the k-hop neighborhood. To illustrate this point, we give an example.

Example 8 (ReFeX and multi-hop information). Suppose one of the base features we use in ReFeX-

LASSO is the fraction of treated neighbors,

ρi =
1

di

∑
j∈Ni

wj ,

and supposed we limit ourselves to mean aggregation, i.e., we look at each unit’s neighbors and

aggregate their fraction of treated neighbors using a mean function. We call this new feature ρ̃i. We

then have that

ρ̃i =
1

di

∑
j∈Ni

ρj

=
1

di

∑
j∈Ni

1

dj

∑
k∈Nj

wk

=

n∑
j=1

Aij

di

n∑
k=1

Ajk

dj
wk

=

n∑
j=1

Ãij

n∑
k=1

Ãjkwk

= [Ã2w]i,

where A and Ã are the same as defined in the linear-in-means model example from (3.3). Note

that the summand is 1 if and only if Aij , Ajk and wk are all 1s. In other words, if we ignore the

normalizing terms, the sum essentially represents the number of length-2 paths in G that start at

unit i and arrive at a treated unit. With the normalizing terms, it is close to the fraction of such

paths among all length-2 paths that start at unit i. Clearly, this feature is informative for unit i’s

2-hop neighborhood.

The above example shows the power of recursion. It allows us to have access to information about

much larger neighborhoods without actually looking up all units in larger neighborhoods. In fact, the

ReFeX component of ReFeX-LASSO is very efficient in terms of computational complexity Henderson

et al. [2011], making the procedure ideal for large-scale experiments on online platforms where

network interference is ubiquitous. Another advantage of our algorithm is that all the covariates

generated are model-agnostic or model-free—we do not generate them according to any particular
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response model (or graph model). Since the aggregation functions are arbitrary, ReFeX can quickly

generate a very large number of features, even for modest iterations budgets T . Despite the fraction

of treated neighbors we just saw, we are also able to get the number of treated neighbors for each unit

by using sum as the aggregation function. In general, using more complicated aggregation functions

yields more complicated features. Thus, the recursive step offers rich features for each unit.

With minor modifications we can see that all pruning steps in our procedure can be grouped

together and done ex ante, i.e., before running the experiment and observing the outcomes. Then,

after the experiment, we use the observed outcomes to select covariates among all the covariates we

have generated. This method has certain advantages, so for completeness we give such a modified

version of ReFeX-LASSO below in Algorithm 3, calling it post-ReFeX-LASSO.

Algorithm 3 post-ReFeX-LASSO

Input: Graph G = (V, E), assignment vector w ∈ {0, 1}n, maximum number of iterations T .
Output: A set of covariates S.
1: Initialize S = {}.
2: For each node/unit i, construct m base features and add m base features to S.
3: for t = 1 to T do
4: Recursively construct features by performing aggregations of features in S that were added

in the previous iteration over neighbors in 1-hop neighborhood.
5: Add those newly constructed features to S.
6: end for
7: Regress y on w as well as features from S using LASSO.
8: Keep selected features in S and remove other features from S.
9: Return S.

An operational advantage of post-ReFeX-LASSO is that two parts of the algorithm, feature

generation and selection, can be done separately. However, in practice we find that post-ReFeX-

LASSO leads to estimates with larger variance. Our explanation for this increased variance is

two-fold. First, since the number of features generated from ReFeX may be large, separating the

generation step and the selection step seems to make the selection step unstable. Second, many of

the features generated along the way of post-ReFeX-LASSO are correlated and including all of them

simultaneously leads to greater uncertainty in terms of features being selected. Hence, it leads to

estimates with larger variance and we recommend ReFeX-LASSO over post-ReFeX-LASSO in all

use cases when operationally feasible.

3.3 Inference with model-free covariates

In the previous section, we gave a sequential procedure that outputs a set of covariates S that

can be used for regression adjustments when estimating GATEs. This section devotes to inference

with model-free covariates. We first discuss how to use model-free covariates returned from ReFeX-

LASSO or post-ReFeX-LASSO to do regression adjustment. Following that, we show one selection
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property of ReFeX-LASSO. We then give theoretical properties of regression adjustment estimator

of the GATE using model-free covariates as well as a simple way to construct confidence interval for

τ .

3.3.1 Estimation

Let u1
i , · · · , uK

i denote the K covariates returned by ReFeX-LASSO or post-ReFeX-LASSO for unit

i and let ui =
[
u1
i , · · · , uK

i

]T ∈ RK be the whole feature vector for unit i. We further let ĝ be the

function that maps (i, w, xi, G) to ui for each unit i. Finally, we denote by nc the number of control

units and nt the number of treated units with nc + nt = n.

To estimate the GATE, we fit two linear models on control and treated units using ui’s. Ideally,

we hope that there exist vectors β0, β1 such that βT
0 ui and βT

1 ui are good approximations of f0 and

f1. To be specific, we first run an ordinary least squares with observations that are from the control

group only and obtain β̂0. We then run ordinary least squares again, but now with observations

that are from treatment group only and obtain β̂1. Meanwhile, the features ui are all features under

the treatment assignment w for which the responses were collected. To estimate the GATE, we are

interested not in the response under ui as it was, but ui as it would be if w = 0 or w = 1. We

thus pass 0 and 1 to ĝ to obtain the feature vectors ugc
i and ugt

i under global control and global

treatment, respectively.

Combining the coefficient estimates β̂1 and β̂0 with the vectors ugc
i and ugt

i , our estimate of the

GATE is then simply

τ̂ =
1

n

n∑
i=1

(β̂T
1 u

gt
i − β̂T

0 u
gc
i ). (3.6)

Though assuming a linear model is restrictive, as we discussed previously, if we are able to generate

predictive features then the linear model can be a good approximation to the true model. ReFeX-

LASSO or post-ReFeX-LASSO helps us choose good features to adjust for and thus both reduce the

variance of the estimate2 and reduce the bias we typically incur when ignoring interference.

3.3.2 Selection properties

Before we delve into inference details, we first discuss selection properties of ReFeX-LASSO, drawing

inspiration from prior work on Sequential LASSO Luo and Chen [2014]. To this end, we introduce

some additional notation. For each iteration t, let {ut
1, u

t
2, · · · , ut

it
} be the set of features generated

in the ReFeX step of ReFeX-LASSO and s∗t be the selected features at the t-th iteration (note

that s∗t may contain features that were selected in previous iterations and thus are not in the set

{ut
1, u

t
2, · · · , ut

it
}). Moreover, we let R(s) to denote the space spanned by features in s.

2In fact, in the case of no interference, Lin Lin [2013] shows that doing linear adjustment can only improve the
precision.
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Proposition 14. For t ≥ 1 and any j ∈ {1, · · · , it+1}, if ut+1
j ∈ R(s∗t) then j /∈ s∗(t+1).

This first proposition implies two things. First, we have a full rank design matrix at each

iteration. Second, the subsequent selection will disregard the features that are highly correlated with

the existing ones and hence provides intuition for why the post-ReFeX-LASSO leads to estimate with

high variance. Without the sequential procedure of (non-post-) ReFeX-LASSO, two highly correlated

features may enter the selection stage together.

Proposition 15. Our selection is nested in the sense that s∗1 ⊆ s∗2 ⊆ · · · ⊆ s∗T .

This second proposition is relatively self-explanatory and ensures that the sequential procedure

actually provides nested feature sets, i.e., by excluding penalties on selected features, we are able to

keep them in our feature set S. Though our selection procedure in ReFeX-LASSO is quite different

from Sequential LASSO Luo and Chen [2014], the proofs of the above two propositions are analogous

to those in Luo and Chen [2014]. There are two key differences between our selection procedure and

Sequential LASSO. First, instead of keeping all the features for every iteration, we throw away non-

selected features in previous iterations. Second, the features under consideration at each iteration are

newly generated features rather than existing features. Put another way, we find that the analysis in

Luo and Chen [2014] is robust to such a change in procedure. Note that Sequential LASSO can be

used for post-ReFeX-LASSO (but not ReFeX-LASSO) since for post-ReFeX-LASSO we generate all

the candidate features in advance. These two propositions together establish two intuitive properties

of our selection step in ReFeX-LASSO that we should expect to hold for our purpose. Their proofs

can be found in Appendix 3.7.1.

3.3.3 Consistency

We now prove that post-ReFeX-LASSO leads to a consistent estimator of the GATE under standard

assumptions one would require for consistency of LASSO. For each unit i, we denote the set of

features generated by the ReFeX step in post-ReFeX-LASSO as {u1
i , · · · , uM

i }. We drop the subscript

i when we refer to the jth feature vector, i.e., uj = [uj
1, · · · , uj

n]
T . Furthermore, we assume that

there exists a subset S∗ ⊂ {u1, · · · , uM} with |S∗| = s such that both f0 and f1 are linear in features

in S∗ with coefficient vectors β0 and β1 respectively. Finally, we denote the design matrix when

estimating β0 by U0 and the design matrix when estimating β1 by U1.

Theorem 26. Suppose that there exists a constant C > 0 such that

max
j=1,··· ,M

∥uj∥2√
n
≤ C,

and the two design matrices U0 and U1 satisfy the (κ; 3)-RE condition over S, then τ̂ is consistent

for τ .
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A proof of Theorem 26 appears in Appendix 3.7.1 and uses mostly standard tools for the study of

LASSO ℓ2-error bounds Wainwright [2019]. The restricted eigenvalue (RE) condition in Theorem 26

is a standard assumption when proving ℓ2-error bound on the coefficient vector. It restricts the

curvature for a specific subset of vectors in the Euclidean space. It is defined as follows Bickel et al.

[2009], van de Geer and Bühlmann [2009], Raskutti et al. [2010]

Definition 27. The matrix X satisfies the restricted eigenvalue (RE) condition over S with param-

eters (κ;α) if
1

n
∥X∆∥22 ≥ κ∥∆∥22 for all ∆ ∈ Cα(S),

where Cα(S) := {∆ ∈ Rd | ∥∆Sc∥1 ≤ α∥∆S∥1}.

Under the assumptions of Theorem 26, we are now able to prove GATE consistency under

LASSO-based feature selection in at least simple settings such as the following, an example setting

where our feature generation procedure outputs two simple features.

Proposition 16. Suppose we run a Bernoulli randomized experiment with treatment probability

0 < p < 1 and we only generate two features, the fraction of treated neighbors ρi and number of treated

neighbors νi. Furthermore, suppose the graph G consists of disjoint cliques of size 3 ≤ mc ≤M (mc

is the size of the c-th cluster) for some positive constant M ≥ 3. If the true f0 and f1 are only linear

in ρi, then τ̂ is consistent for τ .

The lower bound on mc is for identifiability since when all clusters have size 2 then ρi and νi are

essentially the same and we end up with completely duplicated features. Notice also that when all

mc’s are equal, we end up with perfect co-linearity so in that case we wouldn’t consider distinguishing

between these two features. While the above result applies only in a simple setting, it is of its own

importance. In practice, it is not uncommon to adjust for fraction of treated neighbors and report

the resulting estimate as the estimate of the GATE Saint-Jacques et al. [2019], Karrer et al. [2021].

The above proposition shows that when we only want to distinguish covariates between fraction of

treated neighbors and number of treated neighbors, LASSO is a handy tool.

3.3.4 Confidence interval via a block bootstrap

Researchers are usually not just interested in a point estimate of the GATE, they also want to know

the uncertainty contained in the estimate, e.g., through confidence intervals. ReFeX-LASSO brings

flexibility in doing regression adjustment for GATE estimation, but there is no free lunch and it also

brings us difficulty in doing inference, i.e., in constructing confidence interval for τ . First, unlike

Chin [2019] where one assumes an oracle model, here the true model is unknown. Second, features

constructed in Chin [2019] do not use the observed outcomes. With ReFeX-LASSO, though all

the features constructed from ReFeX do not use the outcomes, our selections of covariates depend

on the realized outcomes. Therefore, ReFeX-LASSO leads to an estimator with no clear variance
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expression. Moreover, since our final estimate depends on the actual selected covariates, we require

some technique analogous to post-selection inference as in Lee et al. [2016]. Lee et al. Lee et al.

[2016] consider confidence intervals of coefficients conditional on being selected by LASSO. Yet we

are interested in the confidence interval of τ , not the coefficients, where our estimate τ̂ is calculated

based on the estimated coefficients as well as selected covariates. Because of the combination of

these complexities, we are not able to simply import any known results for inference in this setting.

Let us consider the nature of the inference problem we are facing. In general, the randomness

of our estimate is incurred not just by the randomness of the potential outcomes but also by the

randomness of the assignment vector. To construct the confidence interval, we need to quantify how

these two resources of randomness affect our estimate of the GATE. Note that since we know the

distribution of the assignment vector, the distribution of a given feature is in fact known. What we

don’t have a good characterization of is the randomness of the selection procedure incurred by the

randomness of the assignment vector. In other words, we require understanding how the random

assignments affect the feature selection procedure.

To tackle this complication, we introduce a way to construct confidence intervals based on a block

bootstrap. Ideally if we can do the experiment infinitely many times, we could run 2n experiments

and calculate 2n estimates of the GATE. A confidence interval for τ could then be derived easily.

Our obvious difficulty is then how should we use one single sample to approximate the sample

randomness. We turn to the block bootstrap Efron [1979], Efron and Tibshirani [1994], Cameron

et al. [2008]. The intuition of this usage is that features of units are correlated according to the

particular graph structure of G and hence by sampling clusters (which we expect to be relatively

disconnected) we are able to keep the bootstrap sample looking like the original sample. On the

other hand, resampling units will fail as it cannot replicate the underlying correlation structure in the

data. Though we do not provide theoretical guarantees, we will show that in practice the coverage

is good and the resulting confidence intervals are of reasonable width. We also note in passing that

recent results in Kojevnikov [2021] demonstrate that there is a version of block bootstrap that does

provide theoretical guarantee for certain highlu stylized network processes.

Example 9. Consider the case where our social network G consists of C disjoint cliques C1, · · · , CC
of size m. Units are fully connected within each clique. This setup can be viewed as a special

case of the household experiment studied in Basse and Feller [2018]. In such a case it is natural to

consider sampling all C cliques with replacement to get a bootstrap sample. For network dependent

processes satisfying certain technical assumptions, this sampling process is the correct thing to do

using arguments in Kojevnikov [2021]. Suppose we have a network dependent process {Yn, Gn} that
satisfies assumptions in Kojevnikov [2021]. To make block bootstrap consistent, i.e., producing a

confidence interval that is consistent in level, Assumption 4.1 in Kojevnikov [2021] needs to hold. We

first introduce some notations used in Kojevnikov [2021]. Let Nn(i; s) denote the open neighborhood
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of radius s > 0 around i ∈ Nn, i.e,

Nn(i; s) := {j ∈ Nn : dn(i, j) < s} .

We define the following aggregate measures of the network denseness:

δn(s) := n−1
∑
i∈Nn

|Nn(i; s+ 1)| , Dn(s) := max
i∈Nn

|Nn(i; s+ 1)| .

Moreover, let

∆n(s; k) :=
1

n

∑
i∈Nn

||Nn(i; s+ 1) |−δn(s)|k ,

which is the k-th absolute central moment of the sizes of the (s + 1)-neighborhoods. It is easy to

verify that in our case, δn(sn) = m, ∆n(sn, 2) = 0, and Dn(sn) = m for ∀sn ≥ maxc diam(Cc), since
our graph consists of non-overlapping blocks with equal size m. Now, we let

ωn(i, j) :=
|Nn (i; sn + 1) ∩Nn (j; sn + 1)|

δn (sn)
.

Then,

ωn(i, j) =

1 if i and j are in the same cluster,

0 otherwise.

and ωn(j) = ωn(j, j) = 1 for all j ∈ [n]. With these values, we immediately see that the Assumption

4.1 in Kojevnikov [2021] holds as long as m = o(n). Since the only remaining assumptions needed

to make block bootstrap consistent are about the network dependent process itself, we can conclude

that block bootstrap would be valid in this toy model for network dependent processes given in

Kojevnikov [2021].

We present two versions of block bootstrap here, one for regression adjustment with post-ReFeX-

LASSO and one for regression adjustment with ReFeX-LASSO. Before actually giving the two block

bootstrap procedures, we first introduce the key ingredient in our block bootstrap procedure, a

randomized graph clustering algorithm. Our block bootstrap procedure involves partition the graph

into several clusters. The generic algorithm we use is k-hop-max clustering Ugander and Yin [2020],

a simple adaptation of the CKR partitioning algorithm Calinescu et al. [2005]. The details are shown

in Algorithm 4. The algorithm provides a random clustering of the graph that depends on random

initial conditions. The algorithm is light in computation when k = 1 as we only need to look at

one’s direct neighbors. Also, it returns neighborhood-like clusters. As a remark connecting back to

above example, if our graph consists of disjoint fully connected clusters then 1-hop max clustering

is able to return exactly these clusters as final output. In general, when k > 1, we obtain larger

clusters that are centered around fewer nodes.
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Algorithm 4 k-hop-max graph clustering

Input: Graph G = (V,E).
Output: Graph clustering C1, · · · , Cc where each Cj contains a collection of nodes.
1: for i ∈ V do
2: Xi ← U(0, 1);
3: end for
4: for i ∈ V do
5: i← argmax([Xj for j ∈ Bk(i)]) where Bk(i) is the k-hop neighborhood of node i (including

itself);
6: end for
7: Return C1, · · · , Cc.

We first present the block bootstrap procedure for post-ReFeX-LASSO, given in Algorithm 5.

With post-ReFeX-LASSO, the bootstrap procedure is simpler since the feature generation and selec-

tion part are separated. Unlike the usual bootstrap where we sample random individual units with

replacement, here we sample random clusters from the graph clustering algorithm with replacement.

The intuition is that features ui of units are correlated according to the particular graph structure

of G and hence by sampling clusters, which we expect to be relatively disconnected, we are able

to keep the bootstrap sample “looking like” the original sample. As a specific caveat, though in

expectation the bootstrap sample has sample size n, if we do not have uniformly sized clusters,

then the bootstrap sample may end up with much larger or smaller sample size. Hence we run the

graph clustering algorithm l times and for each clustering we run block bootstrap with the number

of bootstrap replicates B. We use k = T ∗ + 1 for k-hop-max clustering in Algorithm 5 where T ∗ is

the number of iteration where there were features still got selected (since if no feature got selected

in the (T ∗ + 1)-th iteration then interference should happen within (T ∗ + 1)-hop neighborhood).

Next we present the version of block bootstrap with ReFeX-LASSO, given in Algorithm 6. Note

that we cannot simply use the same algorithm since it performs feature generation and feature

selection concurrently. Compared to Algorithm 5, T ∗ now represents the stopping time of ReFeX-

LASSO. Meanwhile, similar to Algorithm 5, the bootstrap sample is only used in the feature selection

step of ReFeX-LASSO. That being said, for each iteration, we still use the same graph G to generate

features but then we use the bootstrap sample of these features to do selection. The intuition behind

using the original graph is that we view the graph as fixed and the correlation structure of all features

are then induced by this graph. Therefore, we do not paste all sampled clusters together to form

a new graph to generate features for next iteration. On the other hand, if we do believe that the

graph is generated from some random process then we may also reconstruct the graph from sampled

units by pasting all sampled clusters together.

In the above two algorithms, we utilize a randomized graph clustering algorithm that can be

easily implemented. Of course, this is not the only possible choice for the graph clustering algorithm

one can use. We note by passing that there are many graph clustering algorithms available for
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Algorithm 5 Block bootstrap for post-ReFeX-LASSO

Input: Graph G = (V, E), assignment vector w ∈ {0, 1}n, number of bootstrap samples B.
Output: Confidence interval for τ .
1: Collect the assignment wi, features u

1
i , · · · , uM

i in S generated before running LASSO, outcome
yi for each unit i. Record the maximum iteration number T ∗ where one of the features generated
at that iteration was selected.

2: for r = 1 to ℓ do
3: Use k-hop max clustering algorithm with k = T ∗ + 1 to divide n units into C clusters
C1, · · · , CC .

4: for b = 1 to B do
5: Sample C clusters with replacement from C1, · · · , CC .
6: Construct the b-th bootstrap sample (wb, u1,b, · · · , uM,b, yb) with units from sampled clus-

ters.
7: Regress y on w as well as M features using LASSO.
8: Compute the estimate τ̂ b using selected features and the bootstrap sample.
9: end for

10: end for
11: Compute the α/2-th quantile q∗α/2 and the (1 − α/2)-th quantile q∗1−α/2 of the sample of all

bootstrap estimates τ̂1, · · · , τ̂ ℓB .
12: Return

[
q∗α/2, q

∗
1−α/2

]
as the (1− α)× 100% confidence interval for τ .

practitioners Nishimura and Ugander [2013], Spielman and Teng [2013], Awadelkarim and Ugander

[2020], Shi and Chen [2020] that exhibit various properties.

We conclude this section with a discussion of how to suitably choose the sizes of clusters. We

consider three scenarios and show why they may fail with heuristics from Kojevnikov [2021]. Though

we are not considering the same problem as in Kojevnikov [2021], given that we have a more

complicated setup, we do not expect that weaker assumptions than those in Kojevnikov [2021]

would be sufficient for good coverage in our case. Therefore, we view assumptions in Kojevnikov

[2021] as what we should expect to have in order to make our block bootstrap consistent.

The first scenario that we consider is when we have O(n) clusters with non-constant sizes. Then

the second absolute central moment of block sizes may be non-vanishing as n→∞ but the average

block size is O(1). This implies that unless the clusters are relatively uniform, there would be a

violation to Assumption 4.1 in Kojevnikov [2021]. As a second scenario, consider the case when we

have O(1) clusters. Now the maximum block size must be of order O(n) and the average block size

is at most O(n), hence Assumption 4.1 in Kojevnikov [2021] is certainly violated. In general, we

don’t want to have too many clusters or too few clusters. Finally, then, consider a scenario where

we have
√
n− 1 clusters of size

√
n and

√
n clusters of size 1. Now the average block size is of order

O(n1/2) and the second absolute central moment of block sizes is not of lower order, which implies

that the ratio does not vanish as n→ 0 and again Assumption 4.1 in Kojevnikov [2021] is violated.

This last example shows that the cluster sizes are not simply a matter of avoiding too big/small

or few/many clusters, but instead here we see we cannot have two groups of clusters with different
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Algorithm 6 Block bootstrap for ReFeX-LASSO

Input: Graph G = (V, E), assignment vector w ∈ {0, 1}n, number of bootstrap samples B.
Output: Confidence interval for τ .
1: Collect the assignment wi and outcome yi for each unit i. Record the stopping time for ReFeX-

LASSO T ∗.
2: Use k-hop max clustering with k = T ∗ + 1 to divide n units into C clusters C1, · · · , CC .
3: for r = 1 to ℓ do
4: for b = 1 to B do
5: Sample C clusters with replacement from C1, · · · , CC .
6: Construct the b-th bootstrap sample with units from sampled clusters.
7: Rerun ReFeX-LASSO with the original sample for feature generation and the bootstrap

sample for feature selection.
8: Use the covariates returned from last step as well as the bootstrap sample to get estimate

of τ , τ̂ b.
9: end for

10: end for
11: Compute the α/2-th quantile q∗α/2 and the (1 − α/2)-th quantile q∗1−α/2 of the sample of all

bootstrap estimates τ̂1, · · · , τ̂ ℓB .
12: Return

[
q∗α/2, q

∗
1−α/2

]
as the (1− α)× 100% confidence interval for τ .

size magnitudes. In summary, the advice is to use a reasonable number of clusters that have sizes

of roughly the same magnitude. What we present in Algorithm 5 and 6 are good default choices if

the network is not very dense.

3.4 Simulation experiments

In this section, we use simulations to provide both empirical guidance on our method when theory

is lacking and empirical evidence of the usefulness of our method. We make use of the Facebook

100 dataset Traud et al. [2012] of real-world social networks. The networks in this dataset are com-

plete online friendship networks for one hundred colleges and universities collected from a single-day

snapshot of Facebook in September 2005. For our simulations we use the network of Swarthmore

college students, being of modest size. We extract the largest connected components of the Swarth-

more network, obtaining a social network with 1,657 nodes and 61,049 edges. The diameter of the

network is 6 and the average pairwise distance is 2.32. Since this network is quite dense, estimation

of the GATE would be very difficult when interference is strong. We use this network to demon-

strate that even for such a network, we are still able to get relatively good estimates from (post-)

ReFeX-LASSO.

We generate an assignment vector using a Bernoulli design with success probability 0.5 and gen-

erate outcome variables according to certain models with varying magnitude of network interference;

these models are summarized in Table 3.1 and 3.2. We will discuss in detail about these outcome
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models in Section 3.4.2. Our simulations can be viewed as semi-synthetic experiments—we use a

true social network but we generate outcomes according to specified models.

Section 3.4.1 introduces the baseline estimators that we compare with in our simulations. Sec-

tion 3.4.2 discusses the outcome models that we use for generating the outcomes with various degree

of interference. Section 3.4.3 compares the regression adjustment estimator using model-free covari-

ates with those commonly-used estimators in practice as in Section 3.4.1 and demonstrate that it

has good performance in terms of root mean squared error. Section 3.4.4 explores the empirical

performance of the confidence interval constructed via block bootstrap and discusses some practical

aspects in the procedure.

3.4.1 Estimation of the GATE

Our ultimate goal of constructing model-free covariates is to use them in GATE estimation. We

first explore the empirical performance of the regression adjustment estimator using model-free

covariates. Specifically, we compare it with two kinds of estimators that are commonly used in

practice: (i) the difference-in-mean estimator and (ii) a Hájek estimator under a network exposure

model Manski [2013]. Difference-in-mean estimator calculate the difference between average outcome

among treated units and average outcome among control units:

τ̂DM =
1∑n

i=1 Wi

n∑
i=1

YiWi −
1∑n

i=1(1−Wi)

n∑
i=1

Yi(1−Wi).

Obviously this estimator ignores interference and will thus incur large bias when interference is

significant.

The basic Hájek estimator for the ATE is defined as

τ̂Hájek =

∑n
i=1 YiWi/P(Wi = 1)∑n

i=1 I(Wi = 1)/P(Wi = 1)
−
∑n

i=1 Yi(1−Wi)/P(Wi = 0)∑n
i=1 I(Wi = 0)/P(Wi = 0)

.

Here we will consider a version of Hájek estimator that accounts for interference. Manski Manski

[2013] studies identification of potential outcome distributions under interference. One concrete

example is when one’s outcome only depends on one’s own assignment as well as the distribution of

assignments for his/her neighbors. Ugander et al. Ugander et al. [2013] further considers a fractional

exposure model where it is assumed that if one is treated and a q > 0.5 fraction of one’s neighbors are

treated then one’s outcome is equal to the potential outcome associated with the assignment vector

1. Similarly, in this exposure model if one is not treated and one’s fraction of treated neighbors is

at most 1− q then one’s outcome is equal to the potential outcome associated with the assignment
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vector 0. Formally, ∀w,w′ ∈ {0, 1}n, this fractional exposure model assumes:

wi = 1,
1

|Ni|
∑
j∈Ni

wj ≥ q =⇒ Yi(w) = Yi(1),

and

wi = 0,
1

|Ni|
∑
j∈Ni

wj ≤ 1− q =⇒ Yi(w) = Yi(0).

We can then use a Hájek estimator that corrects for the probability that these conditions are met

under a Bernoulli design. Specifically, we define the events E1,q
i = {Wi = 1, 1

|Ni|
∑

j∈Ni
wj ≥ q} and

E0,1−q
i = {Wi = 0, 1

|Ni|
∑

j∈Ni
wj ≤ 1 − q}. The corresponding Hájek estimator under a fractional

exposure model is then

τ̂Hájek
q,1−q =

∑n
i=1 YiI(E1,q

i )/P(E1,q
i )∑n

i=1 I(E
1,q
i )/P(E1,q

i )
−
∑n

i=1 YiI(E0,1−q
i )/P(E0,1−q

i )∑n
i=1 I(E

0,1−q
i )/P(E0,1−q

i )
. (3.7)

This estimator accounts for interference by taking the assignments of direct neighbors into con-

sideration. If we still assume local interference in the sense that only one’s direct neighbors can

impact one’s response but want a fully agnostic setting then we could choose q = 1 (notice that in

this case the Hájek estimator is consistent). In our case, the number of neighbors one has is usually

quite large and under independent Bernoulli assignment we wouldn’t expect to observe many units

with all neighbors being treated or not treated. As a bias-variance compromise, we choose q = 0.8.

Finally, we also compare our (post-) ReFeX-LASSO regression adjustment estimator with two

linear regression adjustment estimators that adjust for specific features. We will describe these

two estimators in detail later when we present the simulation results in Section 3.4.3. For post-

ReFeX-LASSO and ReFeX-LASSO, we choose T = 2 and the base features to be fraction of treated

neighbors, number of treated neighbors, fraction of edges in neighborhood that connects a treated

unit and a control unit and also fraction of edges in neighborhood that connects a treated unit

and a treated unit. For aggregation functions in (post-) ReFeX-LASSO, we use both the mean and

variance.

3.4.2 Outcome models

Here we describing the outcome models we use in our simulation study. We carry forward the

notation as in Proposition 16, using ρi to denote the fraction of treated direct neighbors for unit i

and νi to denote number of treated direct neighbors.

We first consider estimation under linear interference. The first model is a linear model in both

number of treated neighbors and fraction of treated neighbors. Such model is also considered in
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Pouget-Abadie et al. [2019a] and Chin [2019]. Specifically,

f0(w,G) = α0 + ξ0ρi + γ0νi (3.8)

and

f1(w,G) = α1 + ξ1ρi + γ1νi. (3.9)

The difference α1−α0 can be viewed as the primary effect of the treatment and coefficients (ξw, γw)

for w = 0, 1 govern how the unit respond to treatment and control, respectively. In particular, if

ξw = γw = 0 then there is no interference and we are back to usual setup of ATE estimation under

SUTVA. Note that for this model, there is no interference beyond the 1-hop neighborhood and hence

the estimation problem is considerably easier. We will refer to this response model as simple linear

interference.

Building on the discussion of the linear-in-means model in the introduction, we also consider a

response model where the interference propagates out to k-hop neighborhoods for k ≥ 2. This model

can be viewed as a truncated linear-in-means model; instead of summing up to infinity, we truncate

the model at j = J for some number J > 1.

Model type (α0, α1) (ξ0, ξ1) (γ0, γ1)

Model 0 (0, 2) (0, 0) (0, 0)

Model 1 (0, 2) (1, 1.5) (0.005, 0.0025)

Model 2 (0, 2) (1, 2) (0.005, 0.01)

Table 3.1: Parameters of simple linear interference outcome model ((3.8) and (3.9)) used in simula-
tion experiments.

Model type α β γ J

Model 3 1 5 2 2

Model 4 1 5 3 2

Model 5 1 5 1 3

Model 6 1 5 2 3

Table 3.2: Parameters of truncated linear-in-means outcome model used in simulation experiments.

Overall we consider the following model configurations of linear interference. Table 3.1 and 3.2

summarize the configurations of the models we consider for simulations. Note that model 0 exhibits

no interference. For all models, the error terms are independently normally distributed with variance

1. The true GATE in these outcome models (either by an exact calculation or by a Monte Carlo

estimate on the Swarthmore network) are 2, 3.69, 4.74, 15, 20, 15 and 35 respectively.
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Beyond linear interference, we also examine a slightly more complicated scenario where linear

interference is violated. In particular, we consider f0 and f1 that are nonlinear in ρi and νi. The

nonlinear functions we use are sigmoid-type so that it is hard to approximate by any linear model3.

We use the Monte Carlo estimate, 9.55, as the true GATE when reporting the simulation results.

Our purpose here is to show that even if we have nonlinear f0 and f1 which violates our linear

interference assumption, our method still leads to an estimator with reasonable performance. This

also echos our previous discussion. In GATE estimation, we are always predicting for a data point

that is outside the range of our observed/training data and hence a simple model can be quite

reliable.

Estimator τ̂DM τ̂Hájek
0.8,0.2 τ̂frac τ̂num post-ReFeX-LASSO ReFeX-LASSO τ̂oracle

Model 0 0.05 0.76 0.24 0.07 0.50 0.32 0.05

Model 1 1.53 1.02 0.36 1.22 1.54 0.70 0.25

Model 2 2.06 1.41 0.47 1.49 1.49 0.59 0.24

Model 3 10.02 3.84 0.37 9.86 1.08 0.93 0.37

Model 4 15.02 5.60 0.56 14.72 1.68 1.59 0.56

Model 5 9.92 6.61 4.53 9.82 1.38 1.73 1.98

Model 6 29.67 22.31 18.22 29.46 2.42 2.47 4.45

Table 3.3: RMSE of estimators of the GATE assuming linear interference (simple linear interference
and truncated linear-in-means) outcome models.

Estimator τ̂DM τ̂Hájek
0.8,0.2 τ̂frac τ̂num post-ReFeX-LASSO ReFeX-LASSO τ̂oracle

Model 0 0.004 0.120 0.021 0.009 0.106 0.042 0.004

Model 1 -1.53 -0.68 -0.25 -1.22 -0.72 -0.004 -0.05

Model 2 -2.06 -1.16 -0.39 -1.48 -0.56 -0.29 0.008

Model 3 -10.02 -3.67 -0.01 -9.85 0.28 0.19 -0.01

Model 4 -15.02 -5.46 0.003 -14.72 0.36 0.31 0.03

Model 5 -9.92 -6.55 -4.52 -9.82 -0.01 -0.24 0.68

Model 6 -29.67 -22.28 -18.21 -29.45 -0.21 -0.31 2.77

Table 3.4: Empirical bias of estimators of the GATE assuming linear interference (simple linear
interference and truncated linear-in-means) outcome models.

3.4.3 Simulation results

We study both the bias and the root mean squared error (RMSE) of each estimator under these varied

models. Table 3.3 and Table 3.4 show the RMSE and bias of several different estimators under linear

3We document this model in the Appendix 3.7.2.
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interference. In these two tables, we show results of two kinds of regression adjustment estimators.

τ̂frac is the regression adjustment estimator that adjusts for the fraction of treated neighbors and

τ̂num adjusts for the number of treated neighbors. They are also considered in Chin [2019]. We also

show the oracle adjustment estimator τ̂oracle as a reference, which marks the best we can do with

full knowledge of the response model. Note that in some cases other estimators can perform better

than the oracle since the oracle adjustment estimator only means we use oracle control covariates.

The covariates are inevitably random and we are not averaging over all possible assignment vectors.

Moreover, for the truncated linear-in-means model, the true covariates are highly correlated, causing

the oracle adjustment estimator to have a large variance. Finally, τ̂DM and τ̂Hájek
0.8,0.2 refer to the simple

difference-in-mean estimator and the Hájek estimator in Equation (3.7) with q = 0.8 as we mentioned

earlier.

First, if we look at the results for Model 0, i.e., when there is no interference, post-ReFeX-LASSO

and ReFeX-LASSO all give better performance compared to the Hájek estimator. Second, for Model

1 and Model 2, the true interference mechanism is simple linear interference. As we can see from

the first two rows of Table 3.3 and Table 3.4, if we fail to account for one feature, the bias and/or

the RMSE can be large. Also, ReFeX-LASSO is dominating post-ReFeX-LASSO with significantly

lower bias and RMSE since for this case ReFeX-LASSO is able to stop considering further features

after the first iteration. For Model 3–6, the underlying model is a truncated linear-in-means model

and the only difference between them is the stopping number J . For the models with J = 2 (Models

3 and 4), the interference is still local, i.e., within one’s direct neighbors, but for J = 3 (Models

5 and 6), it is crucial to consider information from 2-hop neighbors. Our simulation results verify

this intuition. We see that τ̂frac is doing well for model 3 and 4 but very poorly for model 5 and

6. Both post-ReFeX-LASSO and ReFeX-LASSO lead to estimators with relatively small bias and

small RMSE for these more challenging response models.

Turning to the nonlinear model, Table 3.5 below shows our results there. In this case, τ̂frac

and τ̂num represent the same regression adjustment estimators as in the linear case. Compared to

difference-in-means and Hájek, ReFeX-LASSO leads to estimator with much better performance.

Also, based on the comparison of τ̂frac, τ̂num and ReFeX-LASSO, we see that, as in the linear

interference case, even if we happen to adjust for some feature that is of importance, failing to take

all relevant features into account will lead to estimators with either large bias, large variance, or

both. In other words, ReFeX-LASSO helps one choose which set of features to adjust for and hence

incur much smaller bias or variance.

From these simulations we take away that ReFeX-LASSO is able to identify influential features

for regression adjustment and hence produce an estimator with relatively good performance across

many model specifications. We also see that ReFeX-LASSO generally, though not always, performs

significantly better than post-ReFeX-LASSO. This is due to the fact that we select features se-

quentially and hence reduce the variance. In contrast, a standard regression adjustment estimator
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Estimator τ̂DM τ̂Hájek
0.8,0.2 τ̂frac τ̂num post-ReFeX-LASSO ReFeX-LASSO

Bias -5.54 -2.72 -1.56 -2.72 1.29 1.33

RMSE 5.55 3.73 1.92 2.73 5.68 2.75

Table 3.5: RMSE and empirical bias of estimators of the GATE assuming a nonlinear interference
(Appendix 3.7.2) outcome model.

considered in Chin [2019] for some network features (τ̂frac and τ̂num in our simulations) can be far-off

if we fail to choose the right feature. Finally, exposure mapping based estimator like the fractional-

exposure-Hájek estimator can also be pretty bad if we have interference that is quite different from

the assumptions of the exposure model that such estimators assume.

3.4.4 Confidence interval for the GATE

In Section 3.3.4 we introduced a way to construct a confidence interval for τ via a block bootstrap

and gave an explicit algorithm for graph-based block construction. We now evaluate the empirical

coverage of the resulting confidence interval from our block bootstrap. Throughout this section,

we focus on 90% confidence interval for τ . Instead of using the Swarthmore College network as in

the previous section, we use the farmer network in Cai et al. [2015] where we have a larger and

sparser network compared to the Swarthmore College network. In fact, the average size of 2-hop

neighborhoods in Swarthmore network is 1092.65 and the average size of 3-hop neighborhoods in

Swarthmore network is 1622.27. Hence, if we believe that interference is beyond 1-hop neighborhood,

bootstrap will not perform well on such a dense graph since it is hard to create bootstrap samples

that respect the structure in the original sample4. On the other hand, the farmer network in Cai et al.

[2015] is less dense with 2-hop neighborhoods having an average size 23.95 and 3-hop neighborhoods

having an average size 41.49. We will introduce in more details about the background and the details

of this network in Section 3.5. In general, if the network is too dense to produce well-isolated and

balanced clusters then the bootstrap would fail. One thing to notice is that the farmer network itself

is associated with a natural clustering based on which village the each farmer lives in, namely, each

village can be viewed as a cluster in the network. In our simulations here, we thus also show the

results of constructing the confidence interval with block bootstrap of ReFeX-LASSO that uses this

“oracle clustering” of villages. Finally, since we have a sparser network (making interference easier

to manage), we consider two different sets of parameters for linear models that make the effect from

number of treated neighbors larger (and thus GATE estimation harder). Table 3.6 shows the values

of the parameters, loosely based on Model 2 (thus named 2a and 2b)

We first evaluate the effectiveness of such a bootstrap method. We assume linear interference and

4We found that the block bootstrap still gives near to nominal coverage on Swarthmore nwtwork when interference
is local, i.e., within direct neighbors.
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consider Model 3-6 as well as Model 2a and 2b. We fix ℓ = 3, B = 100 and the coverage is calculated

by repeating the whole process 100 times. Table 3.7 and 3.8 show the coverage and the average

Model type (α0, α1) (ξ0, ξ1) (γ0, γ1)

Model 2a (0, 2) (1, 3) (0.01, 0.025)

Model 2b (0, 2) (1, 3) (0.05, 0.15)

Table 3.6: Additional parameters of simple linear interference model ((3.8) and (3.9)) used in simu-
lation experiments.

length of the confidence intervals constructed from our block bootstrap of post-ReFeX-LASSO and

ReFeX-LASSO. To show the necessity of using block bootstrap and of considering the randomness

of the assignment vector, we also include the result of constructing confidence interval using a naive

bootstrap where we just sample each unit with replacement.

Model post-ReFeX-LASSO ReFeX-LASSO Naive Bootstrap Bootstrap with oracle clustering

Model 2a 93% 92% 94% 92%

Model 2b 92% 96% 93% 95%

Model 3 90% 90% 83% 91%

Model 4 88% 87% 80% 91%

Model 5 91% 93% 84% 92%

Model 6 90% 91% 67% 93%

Table 3.7: Coverage of different bootstrap 90% confidence intervals for the GATE with linear inter-
ference (simple linear interference and truncated linear-in-means) outcome models.

Model post-ReFeX-LASSO ReFeX-LASSO Naive Bootstrap Bootstrap with oracle clustering

Model 2a 0.245 0.220 0.235 0.228

Model 2b 0.435 0.384 0.390 0.382

Model 3 0.403 0.380 0.330 0.414

Model 4 0.569 0.534 0.437 0.593

Model 5 0.552 0.549 0.431 0.567

Model 6 1.316 1.316 0.751 1.412

Table 3.8: Average length of 90% confidence intervals for the GATE with linear interference (simple
linear interference and truncated linear-in-means) outcome models.

As we can see from the results, our block bootstrap gives us near nominal coverage for ReFeX-

LASSO and slightly worse but still close to nominal coverage for post-ReFeX-LASSO. However, the

naive bootstrap fails to deliver confidence interval with nominal coverage. In fact, naive bootstrap-

based confidence intervals can give us very bad coverage in some cases. We are also able to get good
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confidence intervals if we use the oracle clustering that is associated with the network. In scenarios

where there are clear natural clusters in the network, these clusters can be a good default choice to

use for block bootstrap. Moreover, as is shown in Table 3.8, both the block bootstrap confidence

interval for ReFeX-LASSO and the block bootstrap confidence interval for post-ReFeX-LASSO are

of reasonable length.

We conclude this section with a simulation to show why choosing the k for k-hop max clustering

adaptively in our block bootstrap procedure is important and how partitioning the graph into just

two clusters fails to give correct coverage. To this end, we consider using 2-hop max and 3-hop

max clustering to divide units into clusters as well as randomly divide units into five clusters, i.i.d.,

without considering the underlying graph structure. We choose to consider 2-hop max and 3-hop

max as we found in the simulations that in most of the cases ReFeX-LASSO will stop after selecting

features about 2-hop neighborhoods. For Cai network, on average 2-hop max clustering and 3-hop

clustering produce 267 and 269 clusters respectively. We choose to compare them with a five-cluster

clustering as five is a lot less than the number of clusters we may have using k-hop max clustering.

We rerun the block bootstrap procedure with these new clusters for Model 6 using ReFeX-LASSO.

Table 3.9 shows the coverage of the confidence intervals. As we can see, contrast to the 91% coverage

in Tablr 3.7 provided by the adaptive k-hop max based block bootstrap, all these three clustering

methods fail to give us nominal coverage. In particular, completely ignoring the graph structure

(“five clusters”) leads to confidence intervals with really poor coverage.

Model 2-hop max 3-hop max Five clusters

Model 6 84% 89% 45%

Table 3.9: Coverage of block bootstrap 90% confidence intervals for the GATE using different graph
clustering algorithms with Model 6 as the true outcome model.

3.5 Real data example

In this section, we would like to apply our method to a real experiment where interference is known

to exist and simple estimators such as difference-in-means would give poor GATE estimates. We

consider data from the intervention in Cai et al. [2015]. They designed a randomized experiment

to study the role of social networks on insurance adoption in rural China. Specifically, a random

subset of farmers were provided with intensive information sessions about the an insurance product.

Cai et al. [2015] found that the diffusion of insurance knowledge drove network effects in product

adoption. Hence, this data is ideal for our purpose in the sense that we know for sure that SUTVA is

violated and we should not trust the simple difference-in-means estimate for estimating the GATE.

Moreover, though we know that network effects do exist, defining an exact exposure model as in

Aronow and Samii [2017] is difficult. Hence, analysis done in Chin [2019] is limited since there only
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four pre-specified features were considered and hence the regression adjustment estimator implicitly

assumed a certain exposure model. We revisit this experiment and estimate the GATE using our

method.

In the original field experiment in Cai et al. [2015] the intensive information sessions were offered

in two separate rounds, leading to four separate treatment arms. For our purpose, following Chin

[2019], we simplify the experiment by viewing the two intensive information sessions as the same

treatment arm. Hence, we reduce the original field experiment to a binary randomized experiment.

As in Cai et al. [2015], the outcome variable is set to be the binary indicator variable for the weather

insurance adoption, and we do not include villagers whose treatment or response information was

missing as well as villagers whose network information was missing. We also combine all the villages

into one social network, denoting this single social network by G. In summary, we have 4,382 nodes

and 17,069 edges. This network is also the one that we used in Section 3.4.4.

The first step for our method is generating model-free covariates. We use exactly the same

set of base features as in the previous simulation section—fraction of treated neighbors, number

of treated neighbors, fraction of edges in neighborhood that connects a treated unit and a control

unit and also fraction of edges in neighborhood that connects a treated unit and a treated unit.

We then use ReFeX-LASSO to generate a group of covariates, using mean and variance aggregation

functions (again, as in the previous simulation section) and estimate the GATE by adjusting for

these covariates with a linear model. We compare the standard error estimate from block bootstrap

with the one computed in Chin [2019].

Estimator Estimate Standard Error
DM 0.078 ——
Hájek 1hop (q = 0.75) 0.163 ——
Hájek 2hop (q = 0.75) 0.167 ——
τ̂chin 0.122 0.056
τ̂num 0.178 0.027
τ̂refex-lasso 0.178 0.043

Table 3.10: Estimates and standard errors of different estimators for the global average treatment
effect on insurance adoption Cai et al. [2015].

Table 3.10 shows the resulting GATE estimates, where τ̂chin is the estimator in Chin [2019] that

adjusts for four covariates: the fraction of treated neighbors, the number of treated neighbors, the

fraction of treated neighbors in 2-hop neighborhoods, the number of treated neighbors in 2-hop

neighborhoods. Meanwhile, τ̂num only adjusts for the number of treated neighbors and τ̂refex-lasso

is the ReFeX-LASSO based adjustment estimator. DM refers to the difference-in-means estimator.

Hájek 1hop assumes a fractional exposure model for 1-hop neighborhood while Hájek 2hop assumes

a fractional exposure model for 2-hop neighborhood, i.e., we use (3.7) but consider 2-hop neighbors

instead. The intuition is that sometimes units that are not direct neighbors but neighbors of direct
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neighbors matter as well and by considering fractional exposure model for 2-hop neighborhood we

are able to take these units into account for the exposure model. We notice that τ̂num and τ̂refex-lasso

give us the same estimate and indeed, the only covariate selected from ReFeX-LASSO is the number

of treated neighbors. Compared to τ̂chin, τ̂refex-lasso has smaller standard error and a larger estimate

of the effect. Finally, though τ̂num and τ̂refex-lasso give nearly the same estimates (same up to three

decimal digits), we see that the former as a smaller standard error. The reasons are twofold. First,

bootstrap in general is conservative. Second, ReFeX estimate should have larger variance as we have

a random selection procedure involved.

3.6 Discussion

In this chapter, we have developed a method to do estimation and inference for the global average

treatment effect (GATE) when network interference is present. We develop a procedure that can be

used to estimate the GATE without pre-specifying either exposure mappings or outcome models.

We also give a way to construct confidence intervals for the GATE using a block bootstrap. We

evaluate our method both through simulations and a real data example.

Many interesting avenues of further investigation have been left unexplored in this manuscript.

First, our results only consider designs that satisfy the uniformity assumption (e.g., Bernoulli design):

this is, of course, limiting, but it does present a useful benchmark. We are particularly interested in

exploring how to extend our work to designs that violate the uniformity assumption such as cluster

randomized design. This is challenging since the covariates we adjust for may be correlated with the

treatment assignment. Second, while our simulations show that the block bootstrap behaves well

in practice, formal results are absent for anything other than a simple toy setting. Third, beyond

linear adjustment we may also want to have a completely nonlinear model to estimate the outcomes

using the covariates returned from the ReFeX-LASSO feature generation and selection process.

3.7 Appendix

3.7.1 Proofs

The proofs of Proposition 14 and Proposition 15 will be exactly the same as the proofs of Proposition

1 and Proposition 2 in Luo and Chen [2014] once we realize that as long as the features that are

included in the penalty do not overlap with the features that have already been selected then we can

just use the proofs in Luo and Chen [2014], i.e., though our sequential selection procedure is different

from that in Luo and Chen [2014], we share the same properties that make these two propositions

hold.

Proof of Proposition 14. We denote by X(s) the design matrix with features in s, i.e., if |s| = m
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then X(s) is a n ×m matrix. At the (t + 1) − th iteration, β will be a (|s∗t| + it+1)-dimensional

vector and we denote by β(s) the |s|-dimensional vector with only coordinates of β that are in s.

Finally, we denote by At+1 the set {ut+1
1 , ut+1

2 , · · · , ut+1
it+1
}.

First we note that since ut+1
j ∈ R(s∗t), ∃v ∈ R|s∗t| such that ut+1

j = X(s∗t)v. We now consider

the objective function lt+1 at the (t+ 1)-th iteration.

lt+1 = ∥y −X(s∗t)(β(s∗t) + β({j})v)−X(At+1/{j})β(At+1/{j})∥22
+ λ (|β({j})|+ ∥β(At+1/{j})∥1)

= ∥y −X(s∗t)β̃(s∗t)−X(At+1/{j})β(At+1/{j})∥22
+ λ (|β({j})|+ ∥β(At+1/{j})∥1)

≥ ∥y −X(s∗t)β̃(s∗t)−X(At+1/{j})β(At+1/{j})∥22
+ λ∥β(At+1/{j})∥1

Hence, when lt+1 is minimized, β({j}) must be 0 and j /∈ s∗(t+1).

Proof of Proposition 15. Again we consider the objective function at the (t+ 1)-th iteration.

lt+1 = ∥y −X(s∗t)β(s∗t)−X(At+1)β(At+1)∥22 + λ∥β(At+1)∥1.

Differentiating lt+1 with respect to β(s∗t), we have

∂lt+1

∂β(s∗t)
= −2XT (s∗t)y + 2XT (s∗t)X(s∗t)β(s∗t) + 2XT (s∗t)X(At+1)β(At+1).

Setting the above derivative to zero,

β̂(s∗t) = [XT (s∗t)X(s∗t)]
−1XT (s∗t)[y −X(At+1)β(At+1)]. (3.10)

Substituting (3.10) into the objective function, we obtain

lt+1 = ∥y −X(s∗t)β(s∗t)−X(At+1)β(At+1)∥22 + λ∥β(At+1)∥1

= ∥y −X(s∗t)[X
T (s∗t)X(s∗t)]

−1XT (s∗t)[y −X(At+1)β(At+1)]−X(At+1)β(At+1)∥22
+ λ∥β(At+1)∥1

= ∥(I −X(s∗t)[X
T (s∗t)X(s∗t)]

−1XT (s∗t))y

− (I −X(s∗t)[X
T (s∗t)X(s∗t)]

−1XT (s∗t))X(At+1)β(At+1)∥22
+ λ∥β(At+1)∥1.

Hence minimizing lt+1 does not affect β̂(s∗t) and β̂(s∗t) will be almost surely nonzero.
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Now we show the proof Theorem 26. We will make use of standard results about LASSO ℓ2-error

bounds. Recall the following result Wainwright [2019]:

Lemma 6. Suppose y = Xθ∗ + w (X ∈ Rn×d) and consider the Lagrangian Lasso with a strictly

positive regularization parameter λn ≥ 2∥X
Tw
n ∥∞. Suppose further that θ∗ is supported on a subset

S of cardinality s, and the design matrix satisfies the (κ; 3)-RE condition over S, then

∥θ̂ − θ∗∥2 ≤
3

κ

√
sλn.

We can show that if the design matrix is C−column normalized, i.e.,

max
j=1,··· ,d

∥Xj∥2√
n
≤ C,

then the choice λn = 2Cσ(
√

2 log d
n +δ) is valid with probability at least 1−2e−nδ2

2 . We thus proceed

with the main proof.

Proof. Notice that ∥X
Tw
n ∥∞ corresponds to the absolute maximum of d zero-mean Gaussian random

variables by definition of infinity norm and each with variance at most C2σ2

n . Hence, from the

Gaussian tail bound, we then have

P

(∥∥∥∥XTw

n

∥∥∥∥
∞
≥ Cσ

(√
2 log d

n
+ δ

))
≤ 2e−

nδ2

2 .

With this particular choice of λn, the lemma implies the upper bound

∥θ̂ − θ∗∥2 ≤
6Cσ

κ

√
s

(√
2 log d

n
+ δ

)
(3.11)

with the same high probability Wainwright [2019].

Now we are ready to prove consistency. First notice that

|τ̂ − τ | =
∣∣∣∣ 1n

n∑
i=1

[
(β̂1 − β∗

1)
Tugt

i − (β̂0 − β∗
0)

Tugc
i

] ∣∣∣∣
≤ 1

n

n∑
i=1

∣∣∣∣ [(β̂1 − β∗
1)

Tugt
i − (β̂0 − β∗

0)
Tugc

i

] ∣∣∣∣
≤ 1

n

n∑
i=1

(∥β̂1 − β∗
1∥2∥u

gt
i ∥2 + ∥β̂0 − β∗

0∥2∥u
gc
i ∥2)

≤ C
√
M(∥β̂1 − β∗

1∥2 + ∥β̂0 − β∗
0∥2)
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Let n0 be the number of control units and n1 be the number of treated units. Then by strong law

of large numbers, n0

n

a.s.−−→ 1− p and n1

n

a.s.−−→ p. Since the design matrices U0 and U1 satisfy the RE

condition, both ∥β̂1 − β∗
1∥2 and ∥β̂0 − β∗

0∥2 converge to 0 in probability by the bound (3.11). Thus

τ̂
P−→ τ .

Proof of Proposition 16. We show that for the setup in Proposition 16, the design matrices satisfy

RE condition with probability going to 1. In our proof, the first column of the design matrix

represents the fraction of treated neighbors while the second column represents the number of treated

neighbors. We introduce one extra notations: for each unit i, we denote by mi the size of the cluster

unit i belongs to. We show the proof for the design matrix for control units, U0. Similar proof can

be done for U1. After centering, the design matrix we use for estimating β0 will be

Ũ0 =

[
1
n0

∑
i:Wi=0(u

1
i − ū1)2 1

n0

∑
i:Wi=0(u

1
i − ū1)(u2

i − ū2)
1
n0

∑
i:Wi=0(u

1
i − ū1)(u2

i − ū2) 1
n0

∑
i:Wi=0(u

2
i − ū2)2

]
.

Here ū1 = 1
n0

∑
i:Wi=0 u

1
i and ū2 = 1

n0

∑
i:Wi=0 u

2
i . Since the true β0 is non-zero only for the first

feature, C3(S) = {∆ ∈ R2 : |∆2| ≤ 3|∆1|}. For such ∆,

1

n0
∥Ũ0∆∥22 = ∆2

1

1

n0

∑
i:Wi=0

(u1
i − ū1)2 + 2∆1∆2

1

n0

∑
i:Wi=0

(u1
i − ū1)(u2

i − ū2) + ∆2
2

1

n0

∑
i:Wi=0

(u2
i − ū2)2

Note that since |∆2| ≤ 3|∆1|, ∆1∆2 ≥ −|∆1||∆2| ≥ −1
3∆

2
2. Therefore,

1

n0
∥Ũ0∆∥22 ≥

1

n0

∑
i:Wi=0

(u1
i − ū1)2∆2

1

+

(
1

n0

∑
i:Wi=0

(u2
i − ū2)2 − 1

3

1

n0

∑
i:Wi=0

(u1
i − ū1)(u2

i − ū2)

)
∆2

2.

(3.12)

To ease notations, we let 1 = 1
n0

∑
i:Wi=0(u

1
i − ū1)2, 2 = 1

n0

∑
i:Wi=0(u

2
i − ū2)2 and 3 =

1
n0

∑
i:Wi=0(u

1
i − ū1)(u2

i − ū2)∆2
2. Now, we analyze each term separately.

1 =
1

n0

∑
i:Wi=0

(u1
i − ū1)2

=
1

n0

∑
i:Wi=0

(u1
i )

2 − (ū1)2

=
n

n0

1

n

n∑
i=1

(1−Wi)(u
1
i )

2 − (ū1)2

=
n

n0

1

n

n∑
i=1

(1−Wi)(u
1
i )

2 −

(
n

n0

1

n

n∑
i=1

(1−Wi)u
1
i

)2

.
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Consider the random variables {(1 − Wi)(u
1
i )

2}ni=1 and {(1 − Wi)u
1
i }ni=1. Since we have disjoint

clusters and the number of units in each cluster is bounded by M , the sum of covariance term is at

most O(n) and hence weak law of large numbers applies for both sequences. Therefore,

1

n

n∑
i=1

(1−Wi)(u
1
i )

2 −

[
p(1− p)2

1

n

n∑
i=1

1

mi − 1
+ p2(1− p)

]
P−→ 0.

Similarly,

1

n

n∑
i=1

(1−Wi)u
1
i

P−→ p(1− p).

Note that n/n0
P−→ 1/(1− p), we obtain

1 −

[
p(1− p)

1

n

n∑
i=1

1

mi − 1

]
P−→ 0.

Here 2 can be done similarly:

2 −

[
p(1− p)

1

n

n∑
i=1

(mi − 1) + p2
1

n

n∑
i=1

(mi − 1)2 − p2

(
1

n

n∑
i=1

(mi − 1)

)]
P−→ 0.

For 3 ,

3 =
1

n0

∑
i:Wi=0

(u1
i − ū1)(u2

i − ū2)

=
1

n0

∑
i:Wi=0

u1
iu

2
i − ū1ū2.

Notice that we have already shown that

ū1 P−→ p, ū2 P−→ p
1

n

n∑
i=1

(mi − 1).

Hence, ū1ū2 P−→ p2 1
n

∑n
i=1(mi − 1). Moreover,

1

n0

∑
i:Wi=0

u1
iu

2
i =

n

n0

1

n

n∑
i=1

(1−Wi)u
1
iu

2
i .

Again by the weak law of large numbers,

1

n

n∑
i=1

(1−Wi)u
1
iu

2
i −

[
p(1− p)2 + p2(1− p)

1

n

n∑
i=1

(mi − 1)

]
P−→ 0.
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Hence, 3 −
[
p(1− p) + p2 1

n

∑n
i=1(mi − 1)

] P−→ 0. Put all these pieces together, we obtain

RHS of (3.12)−

{[
p(1− p)

1

n

n∑
i=1

1

mi − 1

]
∆2

1

+

[
p(1− p)

1

n

n∑
i=1

(mi − 1) + p2
1

n

n∑
i=1

(mi − 1)2 − p2

(
1

n

n∑
i=1

(mi − 1)

)

− 1

3

(
p(1− p) + p2

1

n

n∑
i=1

(mi − 1)

)]
∆2

2

}
P−→ 0.

Notice that mi ≥ 3 and mi ≤M for each i, we conclude that for κ = min{p(1−p)
M−1 , 5

3p−
1
3p

2},

1

n0
∥Ũ0∆∥22 ≥ κ∥∆∥22 w.p. → 1.

3.7.2 Supplementary Materials

Definition 28 (The nonlinear model in simulations). Suppose the assignment vector is w, then for

each unit i, the response is

yi(w) = −5 + 2ziwi + 0.03νi +
1

1 + 0.001 exp (−0.03νi + 9)
+

10

3 + exp (−8ρi + 3.2)
+ ϵi.

Here, zi, ϵi
i.i.d∼ N (0, 1), ρi is the fraction of treated neighbors for unit i and νi is the number of

treated neighbors for unit i.



Chapter 4

Detecting Interference in Online

Controlled Experiments with

Increasing Allocation

4.1 Introduction

4.1.1 Motivations and contributions

A/B testing is a key component in product development, serving as an empirical method to compare

two versions of a product or feature. By randomly splitting the user base into two groups, this

method allows one group to experience version A (often the current version or “control”) and the

other to experience version B (the new or “treatment” version). The most straightforward statistical

analysis following A/B tests is to compute the difference-in-means estimator, i.e., the difference in

the average of outcomes of the treatment group and that of the control group. Under the classical

Stable Unit Treatment Value Assumption (SUTVA), which requires that the potential outcomes

for any unit do not vary with the treatments assigned to other units, one can easily show that the

difference-in-means estimator will be close to the causal effect as long as the sample size is large

[Imbens and Rubin, 2015]. This implies that when we compute the difference-in-means estimator

for any single randomized experiment in an A/B test with increasing allocation, the value of the

estimator should not change by much. However, in some real-world scenarios, we observe drastic

change in the difference-in-means estimators throughout the experiments. In Figure 4.1, we show

an example from an A/B test implemented by LinkedIn. On the x-axis, we show the percentage of

units that are in the treatment group; on the y-axis, we show the value of the difference-in-means

estimator. In this example, we see that the difference-in-means estimator decreases as the treatment

86
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Figure 4.1: An A/B test implemented by LinkedIn with increasing allocation. A and B are different
outcome metrics.

is released to more units. We naturally wonder: What causes this phenomenon? Could it be purely

due to randomness? Is the SUTVA assumption violated in this case?

One plausible explanation for this phenomenon is the existence of interference, i.e., when treat-

ment assigned to one unit may affect observed outcomes for other units. One form of interference

is marketplace competition. Imagine a new treatment that can help units perform better in the

market. For any particular unit, the treatment brings benefit, but when more of the other units

are treated, the other units become more competitive and thus negatively impact the performance

of that particular unit. Therefore, in these cases, we often observe that the difference-in-means

estimator decreases with treatment probability. Indeed, the experiments in Figure 4.1 were run in

a setting with marketplace competition. One other common form of interference is through social

networks. People’s behaviors tend to be positively correlated with those of others connected to

them in the network. Think about a treatment that encourages users to comment on a social media

platform: users tend to comment more when they see comments from friends. In these cases, we

usually observe that the difference-in-means estimator increases with treatment probability.

In practice, however, the structure of interference can be more complicated than the two apparent

forms discussed in the above paragraph. Often, experimenters manually examine the difference-in-

means plot and decide whether to send the job to other experimentation platforms that deal with

interference more carefully. We need a way to formally test whether interference exists.

In this chapter, we introduce statistical testing procedures that test for interference in A/B

testing with increasing allocation. The methods we propose are scalable and parallelable. They are
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also agnostic to interference mechanism: even if we have no knowledge of the interference structure,

the testing procedure is still valid. Knowledge of the interference structure can, however, be helpful

in increasing the power of the testing procedure. We introduce two different testing strategies under

different assumptions in Sections 4.3.1 and 4.3.2. In Section 4.3.1, we introduce a general statistical

test for interference, a test that requires no additional assumptions. The proposed method is inspired

by the testing procedure proposed by [Athey et al., 2018], but it is more powerful than that of [Athey

et al., 2018] by making use of multiple experiments. In Section 4.3.2, we introduce a testing procedure

that is valid under a time fixed effect assumption. The testing procedure is of very low computational

complexity, and it is more powerful than the test proposed in Section 4.3.1. In particular, one special

case of this method formalizes a heuristic algorithm discussed above, which decides that interference

exists when the difference-in-means estimators are very different.

4.1.2 Related work

The classical literature on causal inference often assumes that there is no cross-unit interference.

When interference presents, many classical inference methods break down. Interest in causal infer-

ence with interference started in the social and medical sciences [Sobel, 2006b, Hudgens and Halloran,

2008]. Since then, one line of work focuses on estimation and inference of treatment effects under

network interference [Tchetgen and VanderWeele, 2012, Toulis and Kao, 2013, Aronow and Samii,

2017, Sussman and Airoldi, 2017, Basse and Feller, 2018, Bhattacharya et al., 2020, Leung, 2020,

Sävje et al., 2021, Sävje, 2021, Hu et al., 2022, Li and Wager, 2022]. In order to facilitate estimation,

these works either assume that there are special randomization designs or that the interference has

some restricted form defined by a given network. Applications to A/B testing are also considered in

Ugander et al. [2013], Eckles et al. [2017], and Basse and Airoldi [2018]. One assumption implicitly

made in these works is that the experiment is conducted only once. In the multiple experiments

regime, Viviano [2020] studies the design of two-wave experiments under interference. Yu et al. [2022]

and Cortez et al. [2022] consider estimating the total treatment effects under interference with data

from more than two time steps. Bojinov et al. [2021b] and Han et al. [2021] further investigate the

problem in panel experiments. Our work differs from the above works for at least two reasons: (1)

instead of focusing on estimation, we focus on testing whether interference exists and (2) we do not

need to make additional assumptions in order for the testing procedure to be valid.

In the literature of testing for interference, Bowers et al. [2013] consider model-based approaches,

Pouget-Abadie et al. [2019c] introduce an experimental design strategy, and Aronow [2012] and Athey

et al. [2018] propose conditional randomization tests restricted to a subset of what they call focal

units, and a subset of assignments that make the null hypothesis sharp for focal units. Basse et al.

[2019] and Puelz et al. [2022] further extend this method by using a conditioning mechanism to allow

the selection of focal units to depend on the observed treatment assignment. However, none of these

works addresses the problem of multiple experiments, and their methods tend to have lower power
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when directly applied in our setup. To the best of our knowledge, our work is the first to consider

testing interference with a sequence of randomized experiments.

Our work is also related to research on interference in online marketplace experiments (See [Basse

et al., 2016, Fradkin, 2019, Holtz et al., 2020, Bajari et al., 2021, Wager and Xu, 2021, Johari et al.,

2022, Li et al., 2022] among others). This line of work usually requires careful modeling of the market

and the interference mechanism. The testing procedure introduced in this chapter, in contrast, can

be applied to arbitrary forms of interference.

4.2 Problem Setup

We work in a setting where we run a sequence of A/B tests with increasing allocations. Formally,

suppose that there are K experiments on a population of n units. Let πk be the marginal treatment

probability of the kth experiment. The treatment probabilities satisfy π1 < π2 < · · · < πK . For each

experiment k ∈ {1, . . . ,K} and each unit i ∈ {1, . . . , n}, let

Wi,k := treatment of unit i assigned in the kth experiment,

Yi,k := outcome of unit i in the kth experiment.

Here we assume that Wi,k ∈ {0, 1} is a binary treatment variable and that a value of 1 corresponds

to the treatment group while a value of 0 corresponds to the control group.

The experiments are implemented in the following way. In the first experiment, each unit i is

randomly assigned a treatment Wi,1, where

Wi,1 ∼ Bernoulli(π1) independently. (4.1)

In the subsequent experiments, more units are assigned to the treatment group. Specifically, condi-

tioning on the previous treatments, each Wi,k is sampled from the following distribution indepen-

dently:  Wi,k ∼ Bernoulli ((πk − πk−1)/(1− πk−1)) , if Wi,k−1 = 0;

Wi,k = 1, if Wi,k−1 = 1.
(4.2)

This formulation guarantees that if we look at the kth experiment alone, then the treatments Wi,k’s

are i.i.d. Bernoulli(πk).

Let W1:n,1:K be the n ×K treatment matrix and Y1:n,1:K be the n ×K outcome matrix of all

units and all experiments. Let Xi ∈ Rd be the observed covariates of unit i that do not change over

the course of the experiments. Correspondingly, let X1:n ∈ Rn×d be the matrix of covariates of all

units.

Following the Neyman-Rubin causal model, we assume that potential outcomes Yi,k(w1:n,1:K) ∈ R
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exist for all w1:n,1:K ∈ {0, 1}n×K
and that the observed outcomes satisfy Yi,k = Yi,k(W1:n,1:K).1 The

goal is to test the following hypothesis:

Hypothesis 1 (No cross-unit interference). Yi,k(w1:n,1:K) = Yi,k(w̃1:n,1:K) if wi,1:K = w̃i,1:K .

The hypothesis states that the outcomes of unit i depend only on the treatments of unit i and

not on the treatments of others. We call this hypothesis the no cross-unit interference hypothesis.

4.3 Testing for interference

In this section, we introduce methods that test for the existence of cross-unit interference. For

brevity’s sake, we focus on testing with two experiments. We then discuss further extensions to

multiple experiments in Section 4.3.5.

Naturally, the first question that occurs is how interference might arise. To formalize this, we

introduce a notion of candidate exposure that captures the potential form of interference. Using

domain knowledge, experimenters can specify the candidate exposure, which can vary from appli-

cation to application. When we consider user-level data, we have a natural social network. Here

experimenters may suspect that a user’s outcome is influenced by treatments of “friends”, i.e., users

connected through the social network. And thus in this example, some plausible choices of candidate

exposures include the fraction of friends who are treated, and the number of friends who are treated.

When we consider marketplace competition, advertisers are the subjects of treatment. Here the

sales of an advertiser may be impacted by the treatments of competitors, i.e., advertisers that sell

similar products. Hence in this application, experimenters can choose candidate exposures to be the

number of treated advertisers that sell products of the same category, or an average of treatments

given to other advertisers weighted by some product similarity metric.

Formally, for each experiment k and each unit i, we use Hi,k = hi(W−i,k) ∈ Rm to denote

the candidate exposure. Here W−i,k is the treatments given to all other units except i in the kth

experiment. We use the form hi(W−i,k) to emphasize that the candidate exposure depends on other

units’ treatments. We also writeH1:n,k = (H1,k, H2,k, . . . ,Hn,k)
⊤ ∈ Rn×m to reference the candidate

exposures of all units.

We want to emphasize that for all the tests introduced below, we do not require the candidate

exposure to be correctly specified in order for the tests to be valid. However, the form of the

candidate exposure matters for the power of the tests.

We will then move on to test the hypothesis that no interference exists making use of the candidate

exposure Hi,k. In the following sections, we discuss different strategies to test for interference under

different assumptions.

1In the literature, a no anticipation effects assumption is often made in such potential outcome models. The as-
sumption states that the outcome Yi,k depends only on the treatments assigned during and prior to the kth experiment.
With this assumption, the potential outcomes can be written as Yi,k(w1:n,1:k) which satisfies Yi,k = Yi,k(W1:n,1:k).
Here for simplicity, we keep the original notation.
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4.3.1 Testing under general assumptions

We start with a setting where we have access to a dataset from only one experiment. Suppose that

we collect data on units indexed by i = 1, ..., n, where each unit is randomly assigned to a binary

treatment Wi ∈ {0, 1},
Wi ∼ Bernoulli(π) independently (4.3)

for some 0 ≤ π ≤ 1. For each unit, we observe an outcome of interest Yi ∈ R and some covariates

Xi ∈ Rp. Athey et al. [2018] proposed a method to test for Hypothesis 1 in this setting.2 We sketch

the procedure in Algorithm 7.

Algorithm 7 Testing for interference effect (one experiment).

Input: Dataset D = (W1:n, X1:n, Y1:n, H1:n), exposure function h, test statistic T .

1. Randomly split the data into two folds. Let Ifoc and Iaux be the index set for the first fold
(focal units) and the second fold (auxiliary units). Write the first fold of data as
Dfoc = (Wfoc, Xfoc, Yfoc, Hfoc) and the second as Daux = (Waux, Xaux, Yaux, Haux).

2. Compute a test statistic T (0) = T (Wfoc, Xfoc, Yfoc, Hfoc) that captures the importance of H in
predicting Y .

3. For b = 1, . . . B:

Regenerate treatments for the auxiliary units: W̃
(b)
i ∼ Bernoulli(π) for i ∈ Iaux.

Recompute the candidate exposure for focal units: H̃
(b)
i = hi(Wfoc \{i}, W̃

(b)
aux)) for

i ∈ Ifoc.
Recompute the test statistic: T (b) = T (Wfoc, Xfoc, Yfoc, H̃

(b)
foc).

End For

Output: The p-value

p =
1

B + 1

(
1 +

B∑
b=1

1

{
T (0) ≤ T (b)

})
. (4.4)

Algorithm 7 requires as input a test statistic T that captures the importance of the candidate

exposure H in predicting outcome Y . As an illustration, assume for now that Hi ∈ R. One

plausible choice of the test statistic T (when Hi ∈ R) is the following: we run a linear regression

of Yfoc ∼ Wfoc +Xfoc +Hfoc, extract the coefficient of Hfoc, and take the test statistic T to be the

absolute value of the coefficient. We use this regression coefficient statistic as an example to explain

the intuition of the algorithm. Under the null hypothesis, the candidate exposure H has no power to

predict the outcome Y before or after regenerating treatments, and thus the distribution of the test

2The method proposed by [Athey et al., 2018] is more general. Here we focus on a special case: testing the existence
of cross-unit interference in Bernoulli experiments.
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statistic T will not change after regenerating treatments. Hence the p -value will be stochastically

larger than Unif[0, 1]. Under the alternative hypothesis, the behavior of the p -value can be very

different. Consider a simple example where Hi is the treatment assigned to the closest friend of

unit i and Yi = α⊤Xi + βWi + θHi + ϵi for some i.i.d. zero mean errors ϵi. In this example, the

original test statistic T (Wfoc, Xfoc, Yfoc, Hfoc) ≈ |θ| when the sample size is large. However, after

regenerating treatments, for each focal unit i, if the closest friend of i is among the auxiliary units,

then H̃i is marginally a Bern(π) random variable, independent of Yi; and hence the distribution

of T (Wfoc, Xfoc, Yfoc, H̃
(b)
foc) will not concentrate around |θ|. In this case, the p -value is far from

Unif[0, 1].

In practice, experimenters can use any test statistic T that are suitable for specific applications.

For example, if the covariate X is of high dimension, a lasso-type algorithm can be used. One can

also run more complicated machine learning algorithms, e.g., random forest and gradient boosting,

with Y as a response and X,W,H as predictors, and set the statistic T to be any feature importance

statistic of H. Just like the choice of candidate exposure h, the choice of test statistic T will not

hurt the validity of the test, but will largely influence the power of the test.

Then a natural question to ask is whether we can make use of information from multiple experi-

ments to further increase the power of the test. Suppose that we collect data from two experiments

on the same n units indexed by i = 1, . . . , n. In order to increase the power of the previous testing

procedure, a natural idea is to reduce the variance in the test statistic computed in Algorithm 7. To

do so, instead of focusing on Yi,2 itself, we focus on Yi,2 − Yi,1. This difference is helpful in remov-

ing variance of Yi’s that is shared by Yi,1 and Yi,2 but cannot be explained by the treatment and

covariates. If a unit has some hidden individual characteristics, those characteristics could influence

both Yi,1 and Yi,2 in a similar fashion but may not be well captured by the observed covariates.

To make this intuition precise, we present Algorithm 8, which makes uses of information from two

experiments and tests for the existence of interference effect. We have also included an illustration

of the algorithm in Figure 4.2.

Algorithm 8 has a few key differences from Algorithm 7. First, the choices of focal units are

different. In Algorithm 7, the choice of focal units cannot depend on the treatment assignments

W1:n, whereas in Algorithm 8, the focal units are randomly chosen from those whose treatment

didn’t change. This specific choice guarantees that the treatment of the ith unit will not influence

the difference of Yi,2 and Yi,1 much. Second, as mentioned above, in computing the test statistics,

Y diff is used instead of Y itself. As explained above, this helps reduce variance. Third, instead of

regenerating treatment, Algorithm 8 permutes the treatment of the auxiliary units. This change is

necessary to guarantee the procedure’s validity; the choice of focal units depends on the treatment

vector, and thus naively regenerating treatments will not give a valid procedure anymore. This will

be demonstrated in Section 4.4.
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Figure 4.2: An illustration of Algorithm 8. After selecting the set of focal units and auxiliary units,
we randomly permute rows of the treatment matrix and compute test statistics and p-values based
on the permuted data.
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Algorithm 8 Testing for interference effect (two experiments).

Input: Datasets D1 = (W1:n,1, X1:n, Y1:n,1, H1:n,1), D2 = (W1:n,2, X1:n, Y1:n,2, H1:n,2), exposure
function h, test statistic T .

1. Let Inc = {i : Wi,1 = Wi,2} be the set of units whose treatment didn’t change over the
experiments. Randomly sample a subset of Inc of size n/2 if |Inc| > n/2. We call the subset
Ifoc. Let Iaux = [n] \ Ifoc.

2. Take the difference of Yfoc,2 and Yfoc,1: let Y
diff
foc = Yfoc,2 − Yfoc,1. Compute a test statistic

T (0) = T (Wfoc,1:2, Xfoc, Y
diff
foc , Hfoc,1:2) that captures the importance of H in predicting Y diff .

3. For b = 1, . . . B:

Randomly permute treatments for the auxiliary units of the data: W̃
(b)
i,1:2 = Wσ(b)(i),1:2

for i ∈ Iaux, for some permutation σ(b) of Iaux.

Recompute the candidate exposure for the focal units: H̃
(b)
i,k = hi(Wfoc \{i},k, W̃

(b)
aux,k) for

i ∈ Ifoc and k ∈ {1, 2}.

Recompute the test statistic: T (b) = T (Wfoc,1:2, Xfoc, Y
diff
foc , H̃

(b)
foc,1:2).

End For

Output: The p-value

p =
1

B + 1

(
1 +

B∑
b=1

1

{
T (0) ≤ T (b)

})
. (4.5)

4.3.2 Testing with a time fixed effect model

In the previous section, we allow the existence of “arbitrary time effect”. In particular, Hypothesis 1

allows the outcome Yi,k to depend on the treatments in other experiments, and does not restrict the

relationship among outcomes in different experiments. This brings flexibility and generality, but it

could reduce the power of the testing procedures. In this section, we make additional assumptions

on the structure of time effect and propose a different testing procedure.

Assumption 29 (No temporal interference). Yi,k(w1:n,1:K) = Yi,k(w̃1:n,1:K) if w1:n,k = w̃1:n,k.

Assumption 29 states that the outcomes in experiment k depends only on treatments assigned

in experiment k. In other words, the effect of treatment in one experiment will not carry over to

the other experiments. Under Assumption 29, we can simplify the notation of potential outcomes:

for any w1:n ∈ {0, 1}n, we write Yi,k(w1:n) as the potential outcome and assume that the observed

outcomes satisfy Yi,k = Yi,k(W1:n,k). Note the difference from the previous notation. Previously,

we wrote the potential outcomes Yi,k(w1:n,1:K) for any w1:n,1:K ∈ {0, 1}n×K
. Here we focus on

the potential outcomes Yi,k(w1:n) for any w1:n ∈ {0, 1}n. Following this new notation, we make an

additional assumption.
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Assumption 30 (Time fixed effect). For any w1:n ∈ {0, 1}n, i ∈ {1, . . . , n} and k ∈ {1, . . . ,K},
Yi,k(w1:n) = αi(w1:n) + uk + ϵi,k(w1:n). The random variables ϵi,1(w1:n), . . . , ϵi,K(w1:n) are zero

mean, and are independently and identically distributed, independently of functions α1:n, variables

u1:K , treatments W1:n,1:K , covariates X1:n and other errors ϵj,l for j ̸= i.

Assumption 30 assumes a time fixed effect model. The term uk captures the time effect: some

special events may happen during the kth experiment, and Assumption 30 assumes that the effect

of such events is shared by all units in the experiments. The term αi(w) captures the individual

effect, which could depend on the treatment of unit i as well as treatments of other units. Finally,

the terms ϵi,k(w1:n)’s are errors that are i.i.d. across experiments.

We also note that the commonly used no temporal effect assumption is a special case (stronger

version) of Assumption 30. The no temporal effect assumption assumes that Yi,k(w1:n) = αi(w1:n)+

ϵi,k(w1:n), where the errors ϵi,k(w1:n)’s are zero mean and i.i.d. across experiments. This corresponds

to Assumption 30 with all time fixed effects uk = 0. Such an assumption is particularly plausible

when all the experiments are implemented within a short period of time, where the distribution of

Yi,k(w1:n) is not expected to change much.

Assumption 29 and Hypothesis 1 together state that the outcome Yi,k depend only on the treat-

ment of unit i in experiment k. Therefore, under Assumption 29 and Hypothesis 1, we can further

simplify the notation of potential outcomes: for any w ∈ {0, 1}, we write Yi,k(w) as the potential

outcome and assume that the observed outcomes satisfy Yi,k = Yi,k(Wi,k).
3 With this new notation,

Assumptions 29, 30 and Hypothesis 1 together become a new hypothesis:

Hypothesis 1’. For any w ∈ {0, 1}, i ∈ {1, . . . , n} and k ∈ {1, . . . ,K},

Yi,k(w) = αi(w) + uk + ϵi,k(w), (4.6)

such that the vectors ϵ1:n,1(w), . . . , ϵ1:n,K(w) are i.i.d., and independent of functions α1:n, vector

u1:K , treatments W1:n,1:K , covariates X1:n and other errors ϵj,l(w) for l ̸= k.

This corresponds to the two-way ANOVA [Yates, 1934, Fujikoshi, 1993] and the two-way fixed

effect model [Bertrand et al., 2004, Angrist and Pischke, 2009] in statistics/economics literature.

In the previous section, we conduct some permutation tests that permute the data “vertically”,

i.e., permute different units. Here with the additional assumptions, we can conduct permutation

tests that permute the data “horizontally”, i.e., permute different time points or experiments.

To motivate the permutation test, consider two units i and j. Assume that i has been in the

treatment group the whole time while j has been in the control group the whole time. Under Hypoth-

esis 1’, we have for the first experiment, Yi,1−Yj,1 = (αi(1) + u1 + ϵi,1(1))−(αj(0) + u1 + ϵj,1(0)) =

3Note again the difference with the previous notation. Here we focus on the potential outcomes Yi,k(w) for

any w ∈ {0, 1}, while we consider w1:n,1:K ∈ {0, 1}n×K for the most general case and w1:n ∈ {0, 1}n assuming
Assumption 29.
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αi(1)−αj(0)+ ϵi,1(1)− ϵj,1(0), and for the second experiment, Yi,2− Yj,2 =
(
αi(1)+ u2 + ϵi,2(1)

)
−(

αj(0) + u1 + ϵj,1(0)
)
= αi(1)− αj(0) + ϵi,2(1)− ϵj,2(0). Thus,

Yi,1 − Yj,1 = αi(1)− αj(0) + ϵi,1(1)− ϵj,1(0)

d
= αi(1)− αj(0) + ϵi,2(1)− ϵj,2(0) = Yi,2 − Yj,2.

(4.7)

To put it simply, under Hypothesis 1’, Yi,1 − Yj,1 has the same distribution as Yi,2 − Yj,2. However,

the two distributions could be different when there is interference. Consider a simple model:

Yi,k = Wi,kHi,k + ϵi,k, (4.8)

where Hi,k is the fraction of neighbors of unit i treated in experiment k, and ϵi,k’s are some i.i.d.

zero mean errors. Under this model, Yi,1−Yj,1 = Hi,1 + ϵi,1− ϵj,1 and Yi,2−Yj,2 = Hi,2 + ϵi,2− ϵj,2.

When the number of neighbors of unit i is large, by law of large numbers, we have Hi,1 ≈ π1 and

Hi,2 ≈ π2. We can then observe that Yi,1 − Yj,1 and Yi,2 − Yj,2 have different distributions; in

particular, they have different means.

Given the above observation, we can conduct a permutation test permuting pairs of (i, j) across

experiments. We outline the algorithm in Algorithm 9 and provide an illustration in Figure 4.3.

In Algorithm 9, we compare the value of a test statistic to the value of the statistic after permu-

tation. One simple choice of test statistic is the difference-in-differences statistic:

T (Y diff
I1,1:2, XIm

, HIm,1:2, XI1
, HI1,1:2) =

∣∣mean(Y diff
I1,2)−mean(Y diff

I1,1)
∣∣ , (4.10)

where I1 and Im are defined in the first step of Algorithm 9. We use the simple model (4.8) discussed

above to explain why this choice of statistic is reasonable. Under model (4.8), the difference-in-

differences statistic (without absolute value) will be

mean(Y diff
I1,2)−mean(Y diff

I1,1) ≈ mean(HI1,2)−mean(HI1,1) ≈ π2 − π1. (4.11)

However, after permutation, the difference-in-differences statistic (without absolute value) will be

mean zero. Therefore, T (0) and T (b) will have different distributions and thus the p -value will be

far from the Unif[0, 1] distribution.

One advantage of this difference-in-differences test statistic is its simplicity. To compute this

statistic, there is no need of constructing a candidate exposure or any interference graph, and

thus the computation cost of the test statistic is very low. This test statistic is also very intuitive to

understand. Recall the motivating example in Section 4.1.1: when the difference-in-means estimators

are different, the difference-in-differences test statistic is large. With this test statistic, our algorithm

formalizes the intuition of the motivating example in Section 4.1.1.

The difference-in-differences statistic is not the only one we can choose. Indeed, just as for
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Algorithm 9 Testing for interference effect (two experiments, time fixed effect model).

Input: Datasets D1 = (W1:n,1, X1:n, Y1:n,1, H1:n,1), D2 = (W1:n,2, X1:n, Y1:n,2, H1:n,2), matching
algorithm m, test statistic T .

1. Let I0 = {i : Wi,1 = Wi,2 = 0} and I1 = {i : Wi,1 = Wi,2 = 1}.

2. For each i in I1, match an index j ∈ I0 to i (with no repeat): let m(i) be the matched index
of i. Let Im = {m(i) : i ∈ I1} be the set of matched indices. Here we assume that |I1| < |I0|.
If |I1| ≥ |I0|, we start with I1 instead.

3. For each k ∈ {1, 2}, compute Y diff
I1,k

=
(
Yi,k − Ym(i),k

)
i∈I1

, which is the vector of differences
between the outcomes of the treated units and those of the matched units.
Compute a test statistic T (0) = T (Y diff

I1,1:2
, XIm , HIm,1:2, XI1 , HI1,1:2).

4. For b = 1, . . . B:

For each i ∈ I1:
Randomly permute outcomes across experiments: Ỹ

(b)
i,k = Yi,σi,b(k) and

Ỹ
(b)
m(i),k = Ym(i),σi,b(k) for some permutation σi,b of {1, 2}.

End For

Recompute Ỹ
diff,(b)
I1,k

= (Ỹ
(b)
i,k − Ỹ

(b)
m(i),k)i∈I1 .

Recompute the test statistic: T (b) = T (Ỹ
diff(b)
I1,1:2

, XIm
, HIm,1:2, XI1

, HI1,1:2).

End For

Output: The p-value

p =
1

B + 1

(
1 +

B∑
b=1

1

{
T (0) ≤ T (b)

})
. (4.9)

Algorithms 7 and 8, we have full flexibility in choosing the test statistic. For example, we can add

covariate adjustment into the test statistics: instead of taking the difference of mean(Y diff
I1,2

) and

mean(Y diff
I1,1

), we can take the difference of the fitted intercepts after regressing Y diff
1 (and Y diff

2 ) on

XIm and XI1 . We can also bring the candidate exposure H into the picture. For example, we can

similarly define Hdiff
I1,k

=
(
Hi,k −Hm(i),k

)
i∈I1

for k ∈ {1, 2} and consider the test statistic (when

Hi,k ∈ R): ∣∣Corr [Y diff
I1,2 − Y diff

I1,1, H
diff
I1,2 −Hdiff

I1,1

]∣∣ . (4.12)

Finally, we want to comment on the matching algorithm m used in Algorithm 9. We would first

like to stress that as long as the matching algorithm only looks at the covariates X, the test will

be valid regardless of the quality of matching. In the most extreme case, we can simply conduct a

random matching, and the test will remain valid. More ideally, we would hope each i is matched to

anm(i) such thatXi is close toXm(i). This matching step helps reduce variance due to the covariates
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Figure 4.3: An illustration of Algorithm 9. Algorithm 9 permutes the outcomes across experiments,
whereas Algorithm 8 permutes the treatments across units.

and thus increase the power of the test. In the causal inference literature, matching algorithms have

been widely studied [Rubin, 1973, Stuart, 2010], and we recommend that experimenters choose from

existing algorithms based on their needs and the computational resources available.

4.3.3 Usage of graphs of experimental units

In implementing the proposed algorithms, we often find it helpful to construct a graph of the n

experimental units. Formally, let G = (V,E), with vertex set V = {1, 2, . . . , n} and edge set

E = {Eij}ni,j=1. We now discuss a few different ways of using graphs to test and learn interference

structure.

Interference graph. A graph can be constructed to model interference and to help compute

candidate exposure. We call such a graph an interference graph. When experimental units are

users, it is plausible to assume that a user’s behavior is mostly influenced by friends in a social

network. In this case, we can simply take the interference graph to be the social network, i.e., we

set Eij = 1 if user i and j are friends on the social network. With this graph, many candidate

exposures can be computed easily: number of treated friends HnumFrds
i,k =

∑
j:Eij=1 Wj,k, fraction
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of friends that are treated H fracFrds
i,k =

∑
j:Eij=1 Wj,k/ |{j : Eij = 1}|, number of treated two-hop

friends Hnum2Frds
i,k =

∑
l:∃j s.t.EijEjl=1 Wj,k. The interference graph can be constructed differently

in other settings. When experimental units are advertisers, there is no natural social network.

However, we can construct a “competition network” based on the similarity of the covariates. For a

similarity measure s and a threshold ϵ, we can define Eij = 1 {s(Xi, Xi) ≥ ϵ}. Such a graph reflects

that an advertiser is mostly influenced by its competitors, especially those that are similar to it.

Candidate exposures can then be computed based on this interference graph: number of treated

competitors HnumCpt
i,k =

∑
j:Eij=1 Wj,k, weighted average of competitors’ treatments: HwAvgCpt

i,k =∑
j:Eij=1 s(Xi, Xi)Wj,k.

The interference graph also helps experimenters to understand the nature of interference. Imagine

we have two different interference graphs G1 and G2 and we apply the testing procedure separately

using G1 and G2. If we observe a much smaller p -value for the procedure using G1 than that we

obtain using G2, then we have some evidence suggesting that the interference in the form of G1

is much stronger than in that of G2. In particular, the units that are connected to unit i in G1

might be the most influential in impacting the outcome of unit i. This kind of analysis, though not

fully rigorous, can help experimenters to build better intuitions for modelling in subsequent analysis.

For example, once the interference effect is statistically significant, experimenters may consider re-

running experiments with a cluster randomized controlled trial. Understanding the structure of

interference can be helpful in constructing better clusters.

Graph in matching. A graph can also be helpful in the matching step in Algorithm 9. In the

causal inference literature, matched pairs are often constructed using a minimum cost flow algorithm

on a bipartite graph with treated units on one side and control units on the other side [Rosenbaum,

1989, Hansen and Klopfer, 2006]. Here, the cost of flow from unit i to j can be defined as some

dissimilarity metric between Xi and Xj . For example, the Mahalanobis distance is a common choice

of such a dissimilarity metric [Rubin, 1980]. The bipartite graph may not always be a complete

bipartite graph: sometimes a caliper can be applied to the graph resulting in the removal of edges.

A caliper based on covariates limits with which a unit can be paired [Mahmood, 2018].4 For example,

researchers may only want advertisers to be matched/paired with advertisers who sell products of

the same category; in such cases, there is an edge between i and j only if they sell products of the

same category.

Interestingly, calipered graphs may correspond to the interference graph introduced in the above

section, and thus we only need to construct the graph once and use it in both the step of computing

candidate exposure and the step of matching. This is especially relevant in a market competition

application: a company is expected to be mostly influenced by companies selling similar products,

4In the observational study literature, calipers are often applied on the propensity score [Cochran and Rubin, 1973,
Rosenbaum and Rubin, 1985]. Here we are in an experimental setting instead, where the propensity score is known
and it is the same for all units.



4.3. TESTING FOR INTERFERENCE 100

and thus we put edges in the interference graph; in the mean time, we would like to match companies

selling similar products, and thus we put edges in the bipartite graph used in matching.

4.3.4 Aggregating p-values

One issue with the algorithms proposed is that randomly splitting the data (Algorithms 7, 8 and

10) or the random matching step (Algorithms 9 and 11) can inject randomness into the p -value.

In order to derandomize the procedure, we can run the algorithms many times and aggregate the

p -values. Since the p -values can be arbitrarily dependent on each other, we cannot use Fisher’s

method to aggregate the p -values, which requires independence [Fisher, 1925]. Some possible ways

include, e.g., setting p = 2
∑

pi/n (See [Vovk and Wang, 2020] for more details).

In the previous section, we discuss the usage of an interference graph in constructing candidate

exposure. In practice, experimenters may construct several interference graphs with different sparsity

or structure. We can make use of information from different graphs and construct an “aggregated

p -value”. We can run the algorithms separately for each graph, and compute an “aggregated test

statistic”. For example, we can choose T aggre =
∑

m T (Gm), where Gm is the mth interference graph

considered. Then we can compute an aggregated p -value in the following way:

paggre =
1

B + 1

(
1 +

B∑
m=1

1

{
T aggre ≤ T aggre(b)

})
. (4.13)

4.3.5 Extension to three or more experiments

More generally, experiments may be conducted more than two times. Formally, suppose that we run

K experiments where treatments are randomly assigned according to (4.1) and (4.2). To test for

interference, we can adopt a similar strategy as in Section 4.3.1. We outline the general algorithm

in Algorithm 10. We note that Algorithm 8 is a special case of Algorithm 10. In practice, we

recommend computing the test statistic using the difference of outcomes between experiments (as

emphasized in Algorithm 8), since this helps remove common variance shared by outcomes in the

experiments. One example of such statistic is the following.

∑
(k,l):k ̸=l

|Corr [Yfoc,k − Yfoc,l, Hfoc,l −Hfoc,l]| . (4.14)

If we assume a time fixed effect model as in Section 4.3.2, we can then extend Algorithm 9

to settings with more experiments. We outline the algorithm in Algorithm 11. Again, we note

that Algorithm 9 is a special case of Algorithm 11. Algorithm 11 allows permutation over more

experiments then Algorithm 9 does. In particular, if unit i is treated in experiments K1,K1 +

1, . . . ,K, then the algorithm permutes outcome for unit i and its matched unit over experiments

K1,K1 + 1, . . . ,K. Permuting over more experiments helps the test to leverage information from
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Algorithm 10 Testing for interference effect (multiple experiments).

Input: Datasets Dk = (W1:n,k, X1:n, Y1:n,k, H1:n,k) for k = 1, . . . ,K, exposure function h, test
statistic T .

1. Let Inc = {i : Wi,1 = · · · = Wi,K} be the set of units whose treatment didn’t change over the
experiments. Randomly sample a subset of Inc of size n/2. We call the subset Ifoc. Let
Iaux = [n] \ Ifoc.

2. Compute a test statistic T (0) = T (Wfoc,1:K , Xfoc, Yfoc,1:K , Hfoc,1:K) that captures the
importance of H in predicting Y .

3. For b = 1, . . . B:

Randomly permute treatments for the auxiliary units of the data: W̃
(b)
i,1:K = Wσ(b)(i),1:K

for i ∈ Iaux, for some permutation σ(b) of Iaux.

Recompute the candidate exposure for the focal units: H̃
(b)
i,k = hi(Wfoc \{i},k, W̃

(b)
aux,k), for

i ∈ Ifoc and k ∈ {1, 2, . . . ,K}.

Recompute the test statistic: T (b) = T (Wfoc,1:K , Xfoc, Yfoc,1:K , H̃
(b)
foc,1:K).

End For

Output: The p-value

p =
1

B + 1

(
1 +

B∑
b=1

1

{
T (0) ≤ T (b)

})
. (4.15)
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more experiments and thus increases power of the test. We have included an illustration of this

algorithm in Figure 4.4.

Algorithm 11 Testing for interference effect (multiple experiments, time fixed effect model).

Input: Datasets Dk = (W1:n,k, X1:n, Y1:n,k, H1:n,k) for k = 1, . . . ,K, matching algorithm m, test
statistic T .

1. Let I0 = {i : Wi,1 = · · · = Wi,k = 0} be the set of units that are in the control group in all
experiments. Let I1 = {i : Wi,K−1 = Wi,K = 1} be the set of units that are in the treatment
group in the last two experiments (this is to ensure that we can permute the treatment
assignments across time).

2. For each i in I1, match an index j ∈ I0 to i (with no repeat): let m(i) be the matched index
of i. Let Im = {m(i) : i ∈ I1} be the set of matched indices. Here we assume that |I0| ≥ n/2.

3. For each k ∈ {1, . . . ,K}, compute Y diff
I1,k

=
(
Yi,k − Ym(i),k

)
i∈I1

, which is the vector of
differences between the outcomes of the units in I0 and those of the matched units.
Compute a test statistic T (0) = T (Y diff

I1,1:K
, XIm

, HIm,1:K , XI1
, HI1,1:K).

4. For b = 1, . . . B:

For each i ∈ I1:
Let Si = {k : Wi,k = 1} be the set of experiments in which unit i is treated.

Randomly permute outcomes across Si: Ỹ
(b)
i,k = Yi,σi,b(k) and Ỹ

(b)
m(i),k = Ym(i),σi,b(k)

for all k ∈ Si, where σi,b is a random permutation of Si.

End For

Recompute Ỹ
diff,(b)
I1,k

= (Ỹ
(b)
i,k − Ỹ

(b)
m(i),k)i∈I1

.

Recompute the test statistic: T (b) = T (Ỹ
diff(b)
I1,1:K

, XIm
, HIm,1:K , XI1

, HI1,1:K).

End For

Output: The p-value

p =
1

B + 1

(
1 +

B∑
b=1

1

{
T (0) ≤ T (b)

})
. (4.16)

4.4 Validity of the testing procedures

In this section, we establish validity of the above proposed algorithms. We make use of the following

theorem in [Hemerik and Goeman, 2018a,b, Theorem 2].

Theorem 31 (Random permutations). Let A1, A2, . . . , An ∈ A be n random variables. Let Sn
denote the set of all permutations on [n]. Assume that
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Figure 4.4: An illustration of Algorithm 11. Pairs of units are matched and the outcomes of paired
units are permuted together across experiments.
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1. G ⊂ Sn is a subgroup;

2. For any σ ∈ G, A = (A1, . . . , An)
d
= (Aσ(1), . . . , Aσ(n)) = Aσ.

If σ1, . . . , σB are drawn independently uniformly from G, then for any test statistic T , the p -value

p =
1

B + 1

(
1 +

B∑
b=1

1 {T (A) ≤ T (Aσ)}

)
(4.17)

satisfies

P [p ≤ α] ≤ α. (4.18)

for any α ∈ (0, 1).

We start with establishing the validity of Algorithms 7, 8 and 10 under general assumptions.

Theorem 32 (General assumptions). Assume that the treatments are assigned according to rules

defined in (4.1) and (4.2). Under Hypothesis 1, the p-values produced by Algorithms 7, 8 and 10 are

valid in the following sense: for any α ∈ (0, 1),

P [p ≤ α] ≤ α. (4.19)

Proof. Algorithm 7 has been shown to provide valid p -values in [Athey et al., 2018]. Since Al-

gorithm 8 is a special case of Algorithm 10, it suffices to prove that the p -values produced by

Algorithm 10 are valid. We will be making use of Theorem 31 to show the result.

We start by noting that since Hfoc,1:K is a function of Wfoc,1:K and Waux,1:K , the test statistic

T (Wfoc,1:K , Xfoc, Yfoc,1:K , Hfoc,1:K) can be rewritten as

T (Wfoc,1:K , Xfoc, Yfoc,1:K , Hfoc,1:K)

= Ť (Wfoc,1:K , Xfoc, Yfoc,1:K ,Waux,1:K)
(4.20)

for some function Ť . Thus we can also rewrite

T (Wfoc,1:K , Xfoc, Yfoc,1:K , H̃
(b)
foc,1:K)

= Ť (Wfoc,1:K , Xfoc, Yfoc,1:K , W̃
(b)
aux,1:K).

(4.21)

By construction, W̃
(b)
aux,1:K is a random permutation of the rows of Waux,1:K . Thus we can take the

permutation group G to be the set of all permutation on Iaux. By Theorem 31, it suffices to establish

that

Wσ(aux),1:K |Wfoc,1:K , Xfoc, Yfoc,1:K , Ifoc
d
= Waux,1:K |Wfoc,1:K , Xfoc, Yfoc,1:K , Ifoc,

(4.22)
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for any permutation σ(aux) on Iaux. The above is equivalent to

(
Wσ(aux),1:K ,Wfoc,1:K , Xfoc, Yfoc,1:K ,1 {Ifoc = Ifix}

)
d
= (Waux,1:K ,Wfoc,1:K , Xfoc, Yfoc,1:K ,1 {Ifoc = Ifix}) ,

(4.23)

for any fixed subset Ifix ⊂ [n] of size n/2. Let Ifixc = [n] \ Ifoc. Then, under the null hypothesis 1,

p (Waux,1:K ,Wfoc,1:K , Xfoc, Yfoc,1:K ,1 {Ifoc = Ifix})

= p (Wfixc,1:K ,Wfix,1:K , Xfix, Yfix,1:K ,1 {Ifoc = Ifix})

= p(Wfixc,1:K)p(Wfix,1:K , Xfix, Yfix,1:K)

P [Ifoc = Ifix |Wfixc,1:K ,Wfix,1:K ] ,

(4.24)

where the last line follows from the no cross-unit interference hypothesis and the fact that treatments

are sampled independently across units. Note also that permuting Ifixc will not change the selection

probability of the focal units, i.e., P [Ifoc = Ifix |Wfixc ,Wfix] = P
[
Ifoc = Ifix |Wσ(fixc),Wfix

]
, and

thus

p(Wfixc,1:K)p(Wfix,1:K , Xfix, Yfix,1:K)

P [Ifoc = Ifix |Wfixc,1:K ,Wfix,1:K ]

= p(Wσ(fixc),1:K)p(Wfix,1:K , Xfix, Yfix,1:K)

P
[
Ifoc = Ifix |Wσ(fixc),1:K ,Wfix,1:K

]
= p

(
Wσ(fixc),1:K ,Wfix,1:K , Xfix, Yfix,1:K ,1 {Ifoc = Ifix}

)
= p

(
Wσ(aux),1:K ,Wfoc,1:K , Xfoc, Yfoc,1:K ,1 {Ifoc = Ifix}

)
,

(4.25)

and thus proving (4.23).

Theorem 33 (Time fixed effect model). Assume that the treatments are assigned according to rules

defined in (4.1) and (4.2). Under Assumptions 29- 30 and Hypothesis 1, the p-values produced by

Algorithms 9 and 11 are valid in the following sense: for any α ∈ (0, 1),

P [p ≤ α] ≤ α. (4.26)

Proof. Algorithm 9 is a special case of Algorithm 11, and thus we will only work with Algorithm 11

here. We will again make use of Theorem 31 to show the result.

By construction, the elements in Ỹ
diff,(b)
I1,1:K

are a random permutation of the elements in Y diff
I1,1:K

.

The allowed permutations in Algorithm 11 clearly form a group. Specifically, the allowed permu-

tations are defined by σ = (σi)i∈I1
, where each σi is a permutation of Si = {k : Wi,k = 1}, and

σ(Y diff
i,k ) = Y diff

i,σi(k)
. Following this notation, by Theorem 31, it suffices to show that for any allowed
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permutation σ,

σ(Y diff
I1,1:K) |W1:n,1:K , X1:n, Im

d
= Y diff

I1,1:K |W1:n,1:K , X1:n, Im. (4.27)

Under Assumptions 29 - 30 and Hypothesis 1, following (4.6), we can write Yi,k(w) = αi(w) +

uk + ϵi,k(w). Therefore, for any i ∈ I1 and k ∈ Si, Yi,k = Yi,k(1) = αi(1) + uk + ϵi,k(1). At

the same time, for the matched unit of i, we have Wm(i),k = 0, and thus Ym(i),k = Ym(i),k(0) =

αm(i)(0) + uk + ϵm(i),k(0). The difference of the two satisfies

Y diff
i,k = Yi,k − Ym(i),k

= αi(1) + uk + ϵi,k(1)−
(
αm(i)(0) + uk + ϵm(i),k(0)

)
= αi(1) + ϵi,k(1)− αm(i)(0) + ϵm(i),k(0).

(4.28)

Under Assumption 30,

(
αi(1) + ϵi,k(1)− αm(i)(0) + ϵm(i),k(0)

)
|W1:n,1:K , X1:n, Im, α1:n

d
=
(
αi(1) + ϵi,σi(k)(1)− αm(i)(0) + ϵm(i),σi(k)(0)

)
|W1:n,1:K , X1:n, Im, α1:n

(4.29)

for any permutation σi of Si, because the errors ϵi,k and ϵi,σi(k) are i.i.d conditioning on

W1:n,1:K , X1:n and α1:n (and same for ϵm(i),k and ϵm(i),σi(k)). In addition, since all the errors

ϵi,k’s are independent conditioning on W1:n,1:K , X1:n and α1:n, we have that

(
αi(1) + ϵi,k(1)− αm(i)(0) + ϵm(i),k(0)

)
i∈I1
|W1:n,1:K , X1:n, Im, α1:n

d
=
(
αi(1) + ϵi,σi(k)(1)− αm(i)(0) + ϵm(i),σi(k)(0)

)
i∈I1

|W1:n,1:K , X1:n, Im, α1:n.

(4.30)

Rewriting the above, we get

Y diff
I1,1:K , α1:n |W1:n,1:K , X1:n, Im

d
= σ(Y diff

I1,1:K) |W1:n,1:K , X1:n, Im, α1:n,
(4.31)

which further implies (4.27) and hence gives the desired result.

4.5 Simulations

In this section, we focus on a form of network interference. Specifically, we use a real-life social

network to describe social interactions among units. We generate outcomes with some magnitude of
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network interference and evaluate our methods based on these generated outcomes. Our simulations

can be viewed as semi-synthetic experiments—we use a real-life network but we generate outcomes

according to some model.

We consider the Swarthmore network in the Facebook 100 dataset [Traud et al., 2012]. All

networks in this dataset are complete online friendship networks for one hundred colleges and uni-

versities collected from a single-day snapshot of Facebook in September 2005. Here we focus on the

Swarthmore college network in our simulation. To make the social network connected, we extract

the largest connected component of the Swarthmore network. To summarize, the network we use is

of size 1657 with 61049 edges. The diameter of the network is 6 and the average pairwise distance

is 2.32.

Throughout this section, we assume that we have access to the data of three randomized ex-

periments. We take treatment probabilities π1 = 10%, π2 = 25% and π3 = 50%. In the following

simulation studies, we consider level of significance α = 0.05. Every dot on each plot is an average

over 500 replications. We take B = 200.

4.5.1 Under general assumptions

We compare the power of the tests given in Algorithms 7, 8 and 10. We run Algorithm 10 using all

three experiments, run Algorithm 8 using the second and the third experiments, and run Algorithm 7

using the third experiment, i.e., we always use experiments with the largest treatment probabilities.

We discuss the choice of test statistics in Appendix 4.8. In Figure 4.5a, we assume a linear model of

the outcome Y ; in Figure 4.5b, we assume a nonlinear model. The details of the generating model

can also be found in Appendix 4.8.

In Figures 4.5a and 4.5b, we plot the power of the testing algorithms 7, 8 and 10 at different levels

of interference effects (signal strengths). In the figures, the fraction of common variance controls the

correlation of the individual outcomes across experiments.

We observe from Figures 4.5a and 4.5b that utilizing more experiments helps our algorithms

become more powerful, especially when the fraction of common variance is high. As discussed

in Section 4.1.2, our work is the first to consider testing interference with multiple randomized

experiments. Therefore, we can treat the algorithm utilizing one experiment as the baseline method

that represents the state-of-the-art. Our algorithms appear to have a clear advantage over the

baseline in terms of the power.

We also find that the regression statistic performs better than the correlation statistic, because

the regression step helps reduce variance caused by the observed covariates.

4.5.2 Time fixed effect model

We compare the power of the tests given in Algorithms 10 and 11. We run both algorithms using all

three experiments. We use a regression test statistic in both algorithms. We discuss the choice of
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(a) Outcome Y follows a linear model.
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(b) Outcome Y follows a nonlinear model.
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Figure 4.5: Power of Algorithms 7, 8 and 10.
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test statistics and matching algorithms in Appendix 4.8. In Figure 4.6a, we assume a linear model of

the outcome Y , whereas in Figure 4.6b, we assume a nonlinear model. The details of the generating

model can also be found in Appendix 4.8.

In Figures 4.6a and 4.6b, we plot the power of the testing algorithms 10 and 11 at different

levels of interference effects (signal strengths). Algorithm 11 (testing with a time fixed effect model)

appears more powerful than Algorithm 10 (testing under general assumptions). To understand this

phenomenon, we recall that Algorithm 10 permutes data across experiments, whereas Algorithm 11

permutes data across units. Due to the nature of A/B tests, there is more variability in treatment

allocation across experiments than across units. For example, assume that all units have around

nngb neighbors in the social network. Looking at the fraction of neighbors in the treatment group,

we find that the variation of this quantity across units is of scale 1/
√
nngb, whereas the variation of

this quantity across experiments is of constant scale. By permuting over data points that are more

different, Algorithm 11 gains extra power.

Recall that there is a matching step in Algorithm 11. We find from Figure 4.6a and 4.6b

that covariate-based matching outperforms random matching, especially under a nonlinear outcome

model. In a linear model, the regression step has already removed almost all of the variance caused

by observed covariates. In a nonlinear model, nevertheless, the regression step cannot fully remove

all variance and the matching step can help further reduce variance.

4.6 Applications

In this section, we illustrate how the proposed procedure has been successfully implemented at

LinkedIn as an add-on to their experimentation toolkit. Like other firms in the technology sector such

as Google and Meta, LinkedIn makes business decisions in a data-driven manner and has a culture

to “test everything”. To support the needs to run concurrent A/B tests at scale, LinkedIn built

an in-house experimentation platform, called T-REX (Targeting, Ramping, and Experimentation),

which provides end-to-end experimentation supports [Xu et al., 2015, Ivaniuk, 2020]. Regardless of

the application, T-REX implements simple Bernoulli randomization and relies on t-test for readout

without taking into account potential interactions among experimental units.

This becomes a major limitation for experimentation in a marketplace environment, including

the ads marketplace, where units on either side of the marketplace (advertisers and ad viewers) can

interfere with each other [Basse et al., 2016, Pouget-Abadie et al., 2019b, Liu et al., 2021, Johari et al.,

2022]. For example, ad campaigns that share the targeting audiences interfere with each other by

competing in auctions for ad slots; different ad viewers with similar attributes are connected through

the finite budget of certain ad campaigns. To remove bias in experiments caused by interference,

LinkedIn has implemented the Budget-split platform on top of T-REX for experimentation in their

ads marketplace [Liu et al., 2021].
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(a) Outcome Y follows a linear model.
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(b) Outcome Y follows a nonlinear model.

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●●

covariate−based matching random matching

0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3

0.00

0.25

0.50

0.75

1.00

Signal Strength

P
ow

er

Fraction of
common variance

●

●

●

0.5

0.7

0.9

Algorithm

Testing under
general assumptions

Testing with
a time fixed effect model

Outcome model: nonlinear

Figure 4.6: Power of Algorithms 10 and 11.
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However, since Budget-split uses two halves of the marketplace to simulate the counterfactu-

als under different treatment variants, it does not support the classic factorial design. Under the

current implementation, the platform only runs one experiment at a time, which is much smaller

than the total number of experiments they need to run. This limitation in Budget-split capacity

severely delays innovation: teams need to wait for weeks for a Budget-split slot in order to get an

accurate measurement of their feature ramp before product launch. Nevertheless, not all ramps

suffer from unit interaction, even in the ads marketplace setting. Running Budget-split experiments

with negligible interference incurs a huge opportunity cost. Ideally, the Budget-split platform wants

to prioritize tests that are impacted the most by the interference effects.

At LinkedIn, all feature launches start with small percentage ramps for risk mitigation and

gradually increase the treatment percentage (i.e., 1%, 5%, 10%, 25%) before reaching the iteration

for treatment effect measurement (50%) [Xu et al., 2018, Mao and Bojinov, 2021]. Specifically,

Budget-split amounts to a 50% ramp on the viewers’ side. This increasing allocation scheme provides

us information to detect potential interference. With the algorithms proposed in this chapter, we

implemented a screening step for each feature after the 25% iteration. The experiments are then

ranked by the p-value in the interference test to determine their priority on the Budget-split platform.

It is important to note that the screening module was designed as an add-on to the system without

touching LinkedIn’s existing experimentation solution such as T-REX. By default, the interference

detector only requires experimentation data in two previous iterations and runs Algorithm 9. Users

have the option to provide additional network information that characterizes the potential interfer-

ence mechanism among units and run other algorithms in this chapter. Because of this standalone

nature, a similar interference detector can be readily added to any existing experimentation plat-

forms to trigger alerts when interference might cause a problem.

As an illustration, we consider an online controlled experiment implemented by LinkedIn. The

treatment in this experiment corresponds to a new feature that improves the quality of LinkedIn

members’ attribute for ads targeting. We run a series of experiments with increasing allocation

with the members as the randomization units. Interference effect is expected in these experiments:

when the allocation percentage is small, only a small set of members have the updated attributes,

making them easier to be targeted by ad campaigns. Thus, when comparing metrics such as total

ad impressions, these members tend to have larger average results than members in the control

group. When the treatment allocation increases, more members get the improved attributes. Since

the total ad budget does not increase much, the average difference between treatment and control

units becomes smaller. Figure 4.1 shows the average differences between treatment and control units

in the experiment series. Figure 4.7 shows the output from the interference detector after running

Algorithm 9 based on the 10% and 25% iterations with respect to two different metrics. The p-values

of the permutation test confirm the strong interference effects in these experiments.
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Figure 4.7: Example experiment: Test statistics and p-values from the permutation test. Results on
two metrics are shown.

4.7 Discussion

Missingness In this chapter, we make the assumption that the dataset is complete. A natural

future direction of work is to extend the current methods to scenarios with missing data. It is not

hard to show that if the data is missing completely at random (MCAR), then the proposed testing

procedures are still valid. When MCAR is unrealistic, it will be interesting to study whether our

methods can still be applied under certain conditions. In practice, experimenters need to carefully

examine the possible causes and consequences of missingness and make decisions correspondingly.

Selective inference We propose to use our testing procedure as a screening step for A/B testing:

if the test suggests that no interference exists, then the experimenter can proceed with classical

causal inference analysis. Strictly speaking, the data is used twice here—in the screening step and

in the follow-up analysis. It would be of interest to understand the impact of the screening step on

the follow-up analysis, and to develop valid statistical inference methods conditioning on the result

of the screening step.

Sequential Testing Another question left open by this chapter is whether the proposed methods

can be extended to the sequential testing setting. Our current procedure fixes the number of exper-

iments a priori and constructs a single p-value from the permutation test. In real life, the treatment

probability increases gradually and it would be of practical interest to end the experiment early as

soon as we detect any interference. In that scenario, we need to take into account the randomness
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in stopping time and construct always valid p-values [Johari et al., 2017].

4.8 Appendix: simulation details

4.8.1 Under general assumptions

In Section 4.5.1, we compare the power of the tests given in Algorithms 7, 8 and 10.

Test statistics

Here, we discuss the test statistics used by the algorithms. Let Hi,k be the fraction of treated

neighbors of unit i in experiment k. Let Ni be the number of neighbors of unit i in the social

network.

One experiment. For Algorithm 7, we use the following test statistic: run a linear regression of

Yfoc ∼Wfoc +Xfoc +Nfoc +Hfoc, (4.32)

extract the regression coefficient of H and take the absolute value of the coefficient.

Two experiments. For Algorithm 8, we consider two different test statistics, a correlation statistic

and a regression statistic. For the correlation statistic, we take

T (Wfoc,1:2, Xfoc, Y
diff
foc , Hfoc,1:2) =

∣∣Corr [Y diff
foc , Hfoc,2 −Hfoc,1

]∣∣ . (4.33)

For the regression statistic, we run a regression of

Y diff
foc ∼ Xfoc +Nfoc +Hfoc,1 + (Hfoc,2 −Hfoc,1), (4.34)

extract the regression coefficient of (Hfoc,2 −Hfoc,1) and take the absolute value of the coefficient.

Three experiments. Let Tk,l be the test statistic (regression or correlation) defined above when

only two experiments are utilized (the k-th and l-th experiments are utilized). We then simply use

T1,2 + T2,3 + T1,3 as the test statistic for Algorithm 10 with K = 3.

Outcome models

We consider two different outcome models. For the linear model, let Hi,k be the fraction of treated

neighbors of unit i in experiment k. We assume

Yi,k = (signal strength)Hi,k + 2Wi,k +Xi,1 +Xi,2 + εi,k, (4.35)
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where k ∈ {1, 2, 3} and Xi,1 ∼ N (0.5, 1), Xi,2 ∼ Poisson(3) independently. The errors εi,k’s are

such that (εi,1, . . . , εi,K) is distributed as multivariate Gaussian with E [εi,k] = 0, Var [εi,k] = 1 and

Cov [εi,k, εi,l] = (fraction of common variance) for k ̸= l.

For the non-linear model, let Mi,k be the number of treated neighbors of unit i in experiment k.

We assume

Yi,k = (signal strength)

(
Mi,k

20
+ 5 exp

(
1

50
min (Mi,k, 20)

))
+

2Wi,k +Xi,1 +Xi,2 + εi,k,

(4.36)

where k ∈ {1, 2, 3} and Xi,1 ∼ N (0.5, 1), Xi,2 ∼ Poisson(3) independently. The errors εi,k’s are

such that (εi,1, . . . , εi,K) is distributed as multivariate Gaussian with E [εi,k] = 0, Var [εi,k] = 1 and

Cov [εi,k, εi,l] = (fraction of common variance) for k ̸= l.

4.8.2 Time fixed effect model

In Section 4.5.2, we compare the power of the tests given in Algorithms 10 and 11.

Test statistics

Here, we discuss the test statistics used by the algorithms. Let Hi,k be the fraction of treated

neighbors of unit i in experiment k. Let Ni be the number of neighbors of unit i in the social

network.

Algorithm 10. We use the regression statistic defined in Section 4.5.1.

Algorithm 11. For Algorithm 11, we use an “anova” statistic. Let I ′1 = {i ∈ I1 : Wi,1 = 1}
and let I ′m = {m(i) : i ∈ I ′1}. We start with concatenate Y diff

concat =
(
Y diff
I′
1,1

, Y diff
I1,2

, Y diff
I1,3

)
. Simi-

larly, let Nconcat = (Nconcat,1, Nconcat,m), where Nconcat,1 =
(
NI′

1,1
, NI1,2, NI1,3

)
and Nconcat,m =(

NI′
1,1

, NI1,2, NI1,3

)
. We do the same concatenation for X and H. The reason we take the subset

I ′1 of I1 in the first experiment is that we want Y diff
concat to be a pure contrast of treatment group

and control group. Without the subsetting step, Y diff contains both treatment-control differences

and control-control differences. Let Ind2 be the indicator of the second experiment and Ind3 be the

indicator of the third experiment. We then run two regressions:

Model 1: Y diff
concat ∼ Xconcat +Hconcat +Nconcat + Ind2 +Ind3,

Model 2: Y diff
concat ∼ Xconcat +Nconcat.

(4.37)

Finally, we let the test statistic be the F -statistic from the anova testing of contrasting Model 1

with Model 2.
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Matching algorithms

Random matching. We sample m(i) uniformly at random without replacement.

Covariate-based matching. We use optimal matching based on the Mahalanobis distance of

observed covariates and Ni Sekhon [2011].

Outcome models

We consider two different outcome models. For the linear model, let Hi,k be the fraction of treated

neighbors of unit i in experiment k. We assume

Yi,k = (signal strength)(2Wi + 1)Hi,k + 2Wi,k +Xi,1 +Xi,2 + εi,k, (4.38)

where k ∈ {1, 2, 3} and Xi,1 ∼ N (0.5, 1), Xi,2 ∼ Poisson(3) independently. The errors εi,k’s are

such that (εi,1, . . . , εi,K) is distributed as multivariate Gaussian with E [εi,k] = 0, Var [εi,k] = 1 and

Cov [εi,k, εi,l] = (fraction of common variance) for k ̸= l.

For the non-linear model, let Mi,k be the number of treated neighbors of unit i in experiment k.

We assume

Yi,k = (signal strength)(2Wi + 1)

(
Mi,k

20
+ 5 exp

(
1

50
min (Mi,k, 20)

))
+ 2Wi,k +Xi,1Xi,2 + 1 {Xi,1 > 0.5, Xi,2 > 3.5}+ εi,k,

(4.39)

where k ∈ {1, 2, 3} and Xi,1 ∼ N (0.5, 1), Xi,2 ∼ Poisson(3) independently. The errors εi,k’s are

such that (εi,1, . . . , εi,K) is distributed as multivariate Gaussian with E [εi,k] = 0, Var [εi,k] = 1 and

Cov [εi,k, εi,l] = (fraction of common variance) for k ̸= l.
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