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Correlation does not imply causation

▶ Correlation does not imply causation.
▶ Causation is very important in many areas (economics, education, psychology, medicine,

product development).
▶ Examples: Effect of job training program on long-term employment rates (Riccio et al.,

1989; Friedlander and Robins, 1995), effect of information intervention on student absence
(Rogers and Feller, 2017), effect of taking Aspirin on headache (Imbens and Rubin, 2015).

▶ We could argue that someone else taking an aspirin in a different location cannot have an
effect on my headache. While in job training programs, the outcomes for one participant
may be affected by the number of people trained because of increased competition for
certain jobs.
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Pipeline of causal reasoning

1. Conduct randomized experiments.

– May not be able to conduct randomized experiments.

2. Collect data from randomized experiments.

– Non-compliance.

3. Analyze data (estimation and inference) and draw conclusion.

– Interference (SUTVA violation).
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Interference

▶ In the most general case, each unit in an experiment on n units is associated with 2n

potential outcomes, i.e., every possible assignment vector leads to a different outcome for
each individual.

▶ SUTVA or no interference assumption implies that each unit is associated with only two
potential outcomes, i.e., for each unit i , there are only two potential outcomes Yi (0) and
Yi (1). This assumption significantly reduces the number of potential outcomes.

▶ Violation of SUTVA has been found in many applications, including politics (Sinclair
et al., 2012), education (Hong and Raudenbush, 2006; Rosenbaum, 2007), economics
(Sobel, 2006; Manski, 2013), and public health (Halloran and Struchiner, 1995).

– In job training programs, as we argued above, large number of participants may create
increased competition for certain jobs, and hence affect outcomes of each individual
participant.
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Interference

▶ In this example, a website wants to test which UI design yields higher click rate.
▶ If the action of click or not for one user does not depend on what other users see on their

webpages.
– No interference.

▶ Otherwise, there exists interference.
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Two questions

Testing

▶ Detecting interference in randomized
experiments.

Estimation

▶ Causal effect estimation under interference.

▶ Solutions to the above two questions provide practitioners tools to do causal inference
under interference.
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Detecting interference in randomized experiments

Randomized experiments in the technology industry (a.k.a. A/B tests) are often implemented
with increasing treatment allocation: the new treatment is gradually released to an increasing
number of units through a sequence of randomized experiments. In such a case, a valid testing
procedure for interference could provide valuable and timely feedback on the choice of designs
and help experimenters update development road-maps accordingly.

Contributions

▶ Detecting Interference in Online Controlled Experiments with Increasing Allocation. Kevin
Han, Shuangning Li, Jialiang Mao, Han Wu. KDD 2023. arXiv:2211.03262, 2022.
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Causal effect estimation under interference

When analyzing data from randomized experiments, researchers commonly assume that one
unit’s assignment does not affect another unit’s response, i.e., SUTVA holds. However, when
experimental units interact with each other, SUTVA is often untenable. Estimation under
interference is of considerable scientific interest in many settings.

Contributions

▶ Population Interference in Panel Experiments. Kevin Wu Han, Iavor Bojinov, Guillaume
Basse. Under revision at Journal of Econometrics. arXiv:2103.00553, 2021.

– Estimation and inference for causal effects in panel experiments.

▶ Model-Based Regression Adjustment with Model-Free Covariates for Network Interference.
Kevin Han, Johan Ugander. Accepted by Journal of Causal Inference. arXiv:2302.04997,
2023.

– Estimation and inference of the global average treatment effect under network interference.

8



Detecting Interference in Online Controlled Experiments with
Increasing Allocation
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Joint work with

Shuangning Li Jialiang Mao (LinkedIn) Han Wu

Han, Li, Mao & Wu. Detecting Interference in Online Controlled Experiments with
Increasing Allocation. KDD 2023. arXiv:2211.03262, 2022.
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A/B Testing

▶ A/B testing has been adopted by the technology industry to guide product development
and make business decisions.
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A/B tests with increasing allocation

▶ In practice, A/B tests are often implemented with increasing treatment allocation: the
new treatment is gradually released to an increasing number of units through a sequence
of randomized experiments.

10% 25% 50%
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A/B tests with increasing allocation

▶ The most straightforward statistical analysis following A/B tests is to compute the
difference-in-means estimator, i.e., the difference in the average of outcomes of the
treatment group and that of the control group.

▶ Under the classical Stable Unit Treatment Value Assumption (SUTVA), when we compute
the difference-in-means estimator for any single randomized experiment in an A/B test
with increasing allocation, the value of the estimator should not change by much.
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A motivating example

▶ However, in some real-world scenarios, we observe drastic change in the
difference-in-means estimators throughout the experiments.

Figure: An A/B test at LinkedIn with increasing allocation. A and B are different outcome metrics.

▶ On the x-axis, we show the percentage of units that are in the treatment group; on the
y -axis, we show the value of the difference-in-means estimator.
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A motivating example

▶ The difference-in-means estimator decreases as the treatment is released to more units.

– What causes this phenomenon?
– Could it be purely due to randomness?
– Is the SUTVA violated in this case?
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Detecting interference from A/B tests with increasing allocation

Introduction 16



Setup

▶ Suppose that there are K experiments on a population of n units.

▶ Let πk be the marginal treatment probability of the k th experiment. The treatment
probabilities satisfy π1 < π2 < · · · < πK .

▶ For the k th experiment, each unit is randomly assigned to treatment group with
probability πk .

▶ Once being assigned into the treatment group, a unit will stay in the treatment group in
subsequent experiments.

Introduction 17



Setup

Specifically, the experiments are implemented in the following way.

▶ In the first experiment, each unit i is randomly assigned a treatment Wi,1, where

Wi,1 ∼ Bernoulli(π1) independently.

▶ In the subsequent experiments, each Wi,k is sampled from the following distribution
independently:{

Wi,k ∼ Bernoulli ((πk − πk−1)/(1− πk−1)) , if Wi,k−1 = 0;

Wi,k = 1, if Wi,k−1 = 1.

This formulation guarantees that if we look at the k th experiment alone, then the
treatments Wi,k ’s are i.i.d. Bernoulli(πk).
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Setup

▶ Assignment matrix W1:n,1:K ∈ Rn×K that records the assignments for all n units in K
experiments.

▶ Outcome matrix Y1:n,1:K ∈ Rn×K that records the outcomes for all n units in K
experiments.
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Two sources of interference

Figure: An illustration of two sources of interference - cross-unit interference and temporal interference.
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No cross-unit interference

Hypothesis (No cross-unit interference)

For each unit i and k ∈ {1, · · · ,K}, Yi,k(w1:n,1:K ) = Yi,k(w̃1:n,1:K ) if wi,1:K = w̃i,1:K .

▶ The hypothesis states that the outcomes of unit i depend only on the treatments of unit i
and not on the treatments of others.

▶ We develop methods that test against the no cross-unit interference inspired by Athey
et al. (2018).

▶ There has been many methods for testing interference with a single experiment (Athey
et al., 2018; Pouget-Abadie et al., 2019; Basse et al., 2019; Puelz et al., 2022).

▶ However, none of these works addresses the problem of multiple experiments, and their
methods tend to have lower power when directly applied in our setup.
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Candidate exposures

▶ For each experiment k and each unit i , we use Hi,k = hi (W−i,k) ∈ Rm to denote the
candidate exposure. W−i,k is the treatments given to all other units except unit i in the
k-th experiment.

▶ We use the form hi (W−i,k) to emphasize that the candidate exposure depends on other
units’ treatments.

▶ We will use the candidate exposures explicitly to construct test statistics later.

▶ We do not require the candidate exposure to be correctly specified.

Testing for Interference 22



Candidate exposures

Candidate exposures capture the potential form of interference.

Example (Network experiments (Cai et al., 2015; Basse and Airoldi, 2018))

Experimenters may suspect that a user’s outcome is influenced by treatments of “friends”, i.e.,
users connected through the social network. Thus in this example, some plausible choices of
candidate exposures include the fraction of friends who are treated, and the number of friends
who are treated.

Example (Marketplace experiments (Holtz et al., 2020; Johari et al., 2022))

When we consider marketplace competition, advertisers are the subjects of treatment. Here the
sales of an advertiser may be impacted by the treatments of competitors, i.e., advertisers that
sell similar products. In this application, experimenters can choose candidate exposures to be
the number of treated advertisers that sell products of the same category, or an average of
treatments given to other advertisers weighted by some product similarity metric.
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Permutation test

▶ We consider permutation tests:

Testing for Interference 24



Testing with two experiments

Treatment

Control

Units

Experiments/Time

Permute
Rows

Focal Focal

Auxiliary Auxiliary

Figure: An illustration of Algorithm 1. After selecting the set of focal units and auxiliary units, we
randomly permute rows of the treatment matrix and compute test statistics and p-values based on the
permuted data.
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Testing with two experiments

Algorithm 1 Testing for interference effect (two experiments).

Input: Datasets D1 = (W1:n,1,X1:n,Y1:n,1,H1:n,1), D2 = (W1:n,2,X1:n,Y1:n,2,H1:n,2), exposure function h, test
statistic T .

1. Let Inc = {i : Wi,1 = Wi,2} be the set of units whose treatment didn’t change over the experiments.

Randomly sample a subset of Inc of size n/2. We call the subset Ifoc. Let Iaux = [n] \ Ifoc.
2. Take the difference of Yfoc,2 and Yfoc,1: let Y

diff
foc = Yfoc,2 − Yfoc,1. Compute a test statistic

T (0) = T (Wfoc,1:2,Xfoc,Y
diff
foc ,Hfoc,1:2) that captures the importance of H in predicting Y diff .

3. For b = 1, . . .B:

Randomly permute treatments for the auxiliary units of the data: W̃
(b)
i,1:2 = Wσ(b)(i),1:2 for i ∈ Iaux, for some

permutation σ(b) of Iaux.

Recompute the candidate exposure for the focal units: H̃
(b)
i,k = hi (Wfoc \{i},k , W̃

(b)
aux,k) for i ∈ Ifoc and

k ∈ {1, 2}.
Recompute the test statistic: T (b) = T (Wfoc,1:2,Xfoc,Y

diff
foc , H̃

(b)
foc,1:2).

End For

Output: The p-value

p =
1

B + 1

(
1 +

B∑
b=1

1

{
T (0) ≤ T (b)

})
.
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Testing with two experiments

▶ The idea of choosing focal units is from Athey et al. (2018).

▶ In Athey et al. (2018), the choice of focal units cannot depend on the treatment
assignments W1:n, whereas in Algorithm 1, the focal units are randomly chosen from those
whose treatments didn’t change.

▶ Instead of regenerating treatments as in Athey et al. (2018), Algorithm 1 permutes the
treatments of the auxiliary units. This change is necessary to guarantee the procedure’s
validity; the choice of focal units depends on the treatment vector, and thus naively
regenerating treatments will not give a valid procedure anymore.

▶ Y diff is used to reduce variance.
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Testing with a time fixed effect model

▶ Up to now, we allow the existence of “arbitrary time effect”.

▶ In particular, no cross-unit interference hypothesis allows the outcome Yi,k to depend on
the treatments in other experiments, and does not restrict the relationship among
outcomes in different experiments.

▶ This brings flexibility and generality, but it could reduce the power of the testing procedure.
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Testing with a time fixed effect model

Assumption (No temporal interference)

For each unit i and k ∈ {1, · · · ,K}, Yi,k(w1:n,1:K ) = Yi,k(w̃1:n,1:K ) if w1:n,k = w̃1:n,k .

Under no temporal interference assumption, we can write potential outcomes as Yi,k(w1:n,k).

Assumption (Time fixed effect)

For any w1:n ∈ {0, 1}n, i ∈ {1, . . . , n} and k ∈ {1, . . . ,K},

Yi,k(w1:n) = αi (w1:n) + uk + ϵi,k(w1:n).

The random variables ϵi,1(w1:n), . . . , ϵi,K (w1:n) are zero mean, and are independently and
identically distributed, independently of functions α1:n, variables u1:K , treatments W1:n,1:K ,
covariates X1:n and other errors ϵj,l for j ̸= i .
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Testing with a time fixed effect model

Under no temporal interference and time fixed effect assumption, no cross-unit interference
hypothesis becomes

Hypothesis (Two-way fixed effect)

For any w ∈ {0, 1}, i ∈ {1, . . . , n} and k ∈ {1, . . . ,K},

Yi,k(w) = αi (w) + uk + ϵi,k(w), (1)

such that the vectors ϵ1:n,1(w), . . . , ϵ1:n,K (w) are i.i.d., and independent of functions α1:n,
vector u1:K , treatments W1:n,1:K , covariates X1:n and other errors ϵj,l(w) for l ̸= k.
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Testing with a time fixed effect model

Treatment

Control

Units

Experiments/Time

Match units
Permute
“Horizontally”

Figure: An illustration of Algorithm 2. Algorithm 2 permutes the outcomes across experiments,
whereas Algorithm 1 permutes the treatments across units.
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Why we can do horizontal permutations under time fixed effect

assumption

To motivate the permutation test, consider two units i and j . Assume that i has been in the
treatment group the whole time while j has been in the control group the whole time. Under
the null,

▶ for the first experiment,
Yi,1−Yj,1 = (αi (1) + u1 + ϵi,1(1))−(αj(0) + u1 + ϵj,1(0)) = αi (1)−αj(0)+ϵi,1(1)−ϵj,1(0),

▶ and for the second experiment,
Yi,2−Yj,2 =

(
αi (1)+u2+ϵi,2(1)

)
−
(
αj(0)+u1+ϵj,1(0)

)
= αi (1)−αj(0)+ϵi,2(1)−ϵj,2(0).

▶ Thus,

Yi,1 − Yj,1 = αi (1)− αj(0) + ϵi,1(1)− ϵj,1(0)

d
= αi (1)− αj(0) + ϵi,2(1)− ϵj,2(0) = Yi,2 − Yj,2.

(2)

– To put it simply, under the null, Yi,1 − Yj,1 has the same distribution as Yi,2 − Yj,2.
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Why we can do horizontal permutations under time fixed effect

assumption

However, the two distributions could be different when there is interference.

▶ Consider a simple model:
Yi,k = Wi,kHi,k + ϵi,k , (3)

where Hi,k is the fraction of neighbors of unit i treated in experiment k, and ϵi,k ’s are
some i.i.d. zero mean errors.

▶ Under this model, Yi,1 − Yj,1 = Hi,1 + ϵi,1 − ϵj,1 and Yi,2 − Yj,2 = Hi,2 + ϵi,2 − ϵj,2.

▶ When the number of neighbors of unit i is large, by law of large numbers, we have
Hi,1 ≈ π1 and Hi,2 ≈ π2. We can then observe that Yi,1 − Yj,1 and Yi,2 − Yj,2 have
different distributions; in particular, they have different means.

Testing for Interference 33



Testing with a time fixed effect model
Algorithm 2 Testing for interference effect (two experiments, time fixed effect model).

Input: Datasets D1 = (W1:n,1,X1:n,Y1:n,1,H1:n,1), D2 = (W1:n,2,X1:n,Y1:n,2,H1:n,2), matching algorithm m, test statistic T .

1. Let I0 = {i : Wi,1 = Wi,2 = 0} and I1 = {i : Wi,1 = Wi,2 = 1}.
2. For each i in I1, match an index j ∈ I0 to i (with no repeat): let m(i) be the matched index of i . Let Im = {m(i) : i ∈ I1} be

the set of matched indices.

3. For each k ∈ {1, 2}, compute Y diff
I1,k

=
(
Yi,k − Ym(i),k

)
i∈I1

, which is the vector of differences between the outcomes of the
treated units and those of the matched units.
Compute a test statistic T (0) = T (Y diff

I1,1:2
,XIm ,HIm,1:2,XI1 ,HI1,1:2).

4. For b = 1, . . .B:
For each i ∈ I1:

Randomly permute outcomes across experiments: Ỹ
(b)
i,k = Yi,σi,b(k)

and Ỹ
(b)
m(i),k

= Ym(i),σi,b(k)
for some permutation σi,b of {1, 2}.

End For
Recompute Ỹ

diff,(b)
I1,k

= (Ỹ
(b)
i,k − Ỹ

(b)
m(i),k)i∈I1 .

Recompute the test statistic: T (b) = T (Ỹ
diff(b)
I1,1:2

,XIm ,HIm,1:2,XI1 ,HI1,1:2).

End For

Output: The p-value

p =
1

B + 1

(
1 +

B∑
b=1

1

{
T (0) ≤ T (b)

})
.
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Remarks on algorithms

▶ Algorithm 1 and 2 can be easily extended to more than two experiments with slight
modifications on the choice of focal units.

▶ For Algorithm 1, test statistics can be any statistics that reflect the predictive power of
candidate exposures on outcomes.

▶ For Algorithm 2, one simple choice of test statistic is the difference-in-differences statistic:

T (Y diff
I1,1:2,XIm ,HIm,1:2,XI1 ,HI1,1:2) =

∣∣mean(Y diff
I1,2)−mean(Y diff

I1,1)
∣∣ ,

where I1 and Im are defined in the first step of Algorithm 2.

– No graph needed!

We can also bring the candidate exposures into the picture by using∣∣Corr [Y diff
I1,2 − Y diff

I1,1,H
diff
I1,2 − Hdiff

I1,1

]∣∣ .
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Validity of the testing procedures

Theorem (General assumptions)

Assume that the treatments are assigned according to rules defined in the setup. Under no
cross-unit interference hypothesis, the p-value produced by Algorithm 1 is valid in the following
sense: for any α ∈ (0, 1),

P [p ≤ α] ≤ α.

Theorem (Time fixed effect model)

Assume that the treatments are assigned according to rules defined in setup. Under
Assumptions 1- 2 and no cross-unit interference hypothesis, the p-value produced by Algorithm
2 is valid in the following sense: for any α ∈ (0, 1),

P [p ≤ α] ≤ α.
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Application - an experiment at LinkedIn

▶ As an illustration, we consider an online controlled experiment implemented by LinkedIn.

▶ The treatment in this experiment corresponds to a new feature that improves the quality
of LinkedIn members’ attribute for ads targeting.

▶ We run a series of experiments with increasing allocation with the members as the
randomization units.
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Application - an experiment at LinkedIn

▶ Interference effect is expected in these experiments.
– When the allocation percentage is small, only a small set of members have the updated

attributes, making them easier to be targeted by ad campaigns.
▶ Thus when comparing metrics such as total ad impressions, these members tend to have larger

average results than members in the control group.

– When the treatment allocation increases, more members get the improved attributes.
▶ Since the total ad budget does not increase much, the average difference between treated and

control units becomes smaller.
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Application - an experiment at LinkedIn
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Figure: Example experiment: Test statistics and p-values from permutation. Results on two metrics are
shown.

▶ There is clear interference.
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Model-Based Regression Adjustment with Model-Free Covariates for
Network Interference
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Joint work with

Johan Ugander

Han & Ugander. Model-Based Regression Adjustment with Model-Free Covariates for
Network Interference. Accepted by Journal of Causal Inference. arXiv:2302.04997, 2023.
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Network Interference
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Network interference

▶ A social network/graph G that describes the social interactions among n subjects indexed
by i = 1, ..., n with an edge set E .

▶ Each unit is assigned to treatment independently, Wi ∈ {0, 1} ∼ Bern(pi ) with 0 < pi < 1.

▶ The graph G is associated with a symmetric matrix A ∈ Rn×n so that Aij = 1 if (i , j) ∈ E
and zero otherwise.

▶ N (k)
i denotes the k-hop neighborhood around node i ∈ V (the superscript k will be

dropped when k = 1).
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Network interference

▶ Potential outcomes Yi (w) for each assignment vector w ∈ {0, 1}n and each unit i .
▶ Observed outcomes Yi = Yi (w).

1

2

3

4

56 unit i

Y1

Y2

Y3

Y4

Y5Y6

Ni

treatment

control
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Global Average Treatment Effect

The causal estimand of interest is

τ =
1

n

n∑
i=1

E[Yi (1)− Yi (0)].

This estimand

▶ measures the overall effect of the intervention on the experimental units.

▶ is simply the average treatment effect (ATE) under SUTVA.
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A Regression Perspective

▶ A typical approach to estimate the GATE is by modeling how the assignment vector
affects the outcomes (Toulis and Kao, 2013; Cai et al., 2015; Chin, 2019).

▶ We assume two functions f0 and f1 such that for each unit i and each assignment vector
w ∈ {0, 1}n,

Yi (w) = wi f1(i ,w , xi ,G ) + (1− wi )f0(i ,w , xi ,G ) + ϵi , (4)

with ϵi ’s being exogenous, i.e. E[ϵi |w ] = 0.
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Linear interference

▶ Given (4), we can use the treated units to estimate f1 and control units to estimate f0.
Suppose f̂0 and f̂1 are two estimates of f0 and f1 respectively, then a natural estimator of
the GATE would be

τ̂ =
1

n

n∑
i=1

[f̂1(i , 1, xi ,G )− f̂0(i , 0, xi ,G )]. (5)

▶ Unfortunately, estimation of the GATE will be impossible (there exists no consistent
estimators) without any further assumptions on the structure of the functions f0 and f1
(Basse and Airoldi, 2018).
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Linear interference

We consider a specific interference structure - linear interference.

Definition (Linear interference)

We say that the model Y = {Yi (w) : w ∈ {0, 1}n, i ∈ [n]} exhibits linear interference if there
exists a function

g : [n]× {0, 1}n ×X × G → RK and θ0 ∈ RK , θ1 ∈ RK

such that

f0(i ,w , xi ,G ) = θT0 g(i ,w , xi ,G ) and f1(i ,w , xi ,G ) = θT1 g(i ,w , xi ,G ). (6)

We call each coordinate function gj of g a feature of the interference.

▶ Though the functional form is linear, g can be nonlinear. Hence this definition also
includes nonlinear functions.

▶ Untestable from data.
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Linear interference

Example (Linear-in-means model (Bramoullé et al., 2009))

Consider the structural model

y = α1+ βÃy + γw + δÃw + ϵ, E[ϵ|w] = 0, (7)

where y is the n × 1 outcome vector, Ã is the degree-normalized adjacency matrix, i.e.,
Ãij = Aij/di , w is the assignment vector, and (α, β, γ, δ) are parameters. Under some mild
conditions on the coefficients and the graph G , we can rewrite the above model as

y = α/(1− β)1+ γw + (γβ + δ)
∞∑
j=0

βj Ãj+1w +
∞∑
j=0

βj Ãj+1ϵ. (8)

Note that now the outcome is linear in the assignment vector w as well as {Ãj+1w}∞j=0. Let

f0(i ,w , xi ,G ) = f1(i ,w , xi ,G ) = α/(1− β) + γwi + (γβ + δ)
∑∞

j=0 β
j Ãj+1w and notice that

E[
∑∞

j=0 β
j Ãj+1ϵ|w ] = 0. Thus, the linear-in-means model (7) can be written in the form of (4).
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Estimation of the GATE under linear interference

▶ If we know the function g a priori, Chin (2019) provides a complete solution.

▶ If we don’t know the function g , then there are three significant challenges.

– First, how should we construct g so that the one we construct approximates the true one?
– Second, suppose we have many candidate functions then how should we select among them?
– Third, even if we have satisfactory answers to the first two questions, how should we do

inference?
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Model-free covariates

▶ To answer the first two questions, we introduce a sequential procedure to generate and
select features of interference.

– We generate rich candidate features based solely on the graph structure as well as the
assignment vector and select among these features based on the observed outcomes.

▶ These model-free covariates will be used to estimate the GATE.
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Model-free covariates

▶ We call the procedure ReFeX-LASSO as it builds on the graph mining technique ReFeX
(Henderson et al., 2011) to generate candidate features while using LASSO (Tibshirani,
1996) to select features.

▶ ReFeX (Recursive Feature Extraction) was originally designed to generate features for
graph mining tasks. It can be viewed as

– a recursive algorithm that starts with base features of each node in the graph and iteratively
(i) adds and (ii) prunes features based on aggregations over features from neighboring nodes.

– a simple early precursor to recent methods for graph representation learning based on graph
convolution networks (GCNs) (Hamilton et al., 2017; Kipf and Welling, 2017).
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Ingredients of ReFeX

▶ Base features.

– Base features are those features that can be constructed by only looking at each node’s
1-hop neighborhood.

– Examples: graph features, features constructed by using both the graph and the assignment
vector, features constructed by using both the graph and the pre-treatment covariates.

▶ Aggregation functions.

– Aggregation functions are functions that take features from neighboring nodes as inputs and
output a single value.

– One aggregation function essentially computes a statistic based on the sample of feature
values from neighbors.

– Examples: min, max, sum, mean and variance.
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Illustration of ReFeX
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ReFeX-LASSO

Algorithm 3 ReFeX-LASSO

Input: Graph G = (V , E), assignment vector w ∈ {0, 1}n, maximum number of iterations T .
Output: A set of covariates S .
1: Initialize S = {}, active feature set A = {}.
2: For each node/unit i , construct m base features and add m base features to A.
3: for t = 1 to T do
4: Regress y on w and features from S and A using LASSO with no penalty on features

from S .
5: If no feature in A is selected, return S . Otherwise, add selected features from A to S .
6: Recursively construct features by performing aggregations of features in A over neighbors

in 1-hop neighborhood.
7: Delete old features in A and add those new features to A.
8: end for
9: Return S .
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ReFeX and multi-hop information

Example

Suppose one of the base features we use in ReFeX-LASSO is the fraction of treated neighbors,

ρi =
1

di

∑
j∈Ni

wj ,

and we limit ourselves to mean aggregation. We call the two-hop aggregated feature ρ̃i . Then

ρ̃i =
1

di

∑
j∈Ni

ρj =
1

di

∑
j∈Ni

1

dj

∑
k∈Nj

wk

=
n∑

j=1

Aij

di

n∑
k=1

Ajk

dj
wk =

n∑
j=1

Ãij

n∑
k=1

Ãjkwk = [Ã2w ]i ,

where A and Ã are the same as defined in the linear-in-means model example from (7). Clearly,
this feature is informative for unit i’s 2-hop neighborhood.
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Estimation of the GATE with model-free covariates

▶ Suppose ReFeX-LASSO returns K features, we then would think that g maps i ,w , xi ,G to
a K−dimensional vector that consists of these feature values.

▶ Recall under linear interference,

f0(i ,w , xi ,G ) = θT0 g(i ,w , xi ,G ) and f1(i ,w , xi ,G ) = θT1 g(i ,w , xi ,G ).

Therefore we could estimate the GATE as follows. We

1. run ordinary least squares with observations from the control group only and covariates
returned by ReFeX-LASSO to obtain β̂0.

2. run ordinary least squares again, now with observations from treatment group only and
covariates returned by ReFeX-LASSO to obtain β̂1.

3. get covariate values ugc
i and ugt

i under w = 0 and w = 1.
4. output

τ̂ =
1

n

n∑
i=1

(β̂T
1 u

gt
i − β̂T

0 u
gc
i ).
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Selection properties of ReFeX-LASSO

For each iteration t, let {ut1, ut2, · · · , utit} be the set of features generated in the ReFeX step of
ReFeX-LASSO and s∗t be the selected features at the t-th iteration (note that s∗t may contain
features that were selected in previous iterations and thus are not in the set {ut1, ut2, · · · , utit}).
Moreover, we let R(s) to denote the space spanned by features in s.

Proposition (No highly correlated features)

For t ≥ 1 and any j ∈ {1, · · · , it+1}, if ut+1
j ∈ R(s∗t) then j /∈ s∗(t+1).

Proposition (Nested feature sets)

Our selection is nested in the sense that s∗1 ⊆ s∗2 ⊆ · · · ⊆ s∗T .
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Additional remarks of ReFeX-LASSO

▶ We also derive consistency results for the estimator under standard assumptions of LASSO
in the paper.

▶ There is also a closely related method to ReFeX-LASSO in the paper where selection is
done after generating all the features.

▶ We use LASSO instead of the original feature pruning step in ReFeX. The reasons are
two-fold.

1. First, we would use selected features to do regression adjustment and LASSO does feature
selection based on a linear model.

2. Second, the feature pruning step in ReFeX requires choosing a hyperparameter p and unlike
LASSO where we can choose λ by cross validation, there is no natural procedure to choose
p according to data.
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Confidence interval for the GATE

To do inference, we would like to construct confidence intervals for the GATE.

Difficulties:

▶ The true model is unknown.

▶ Features are constructed (specifically, the selection step) using the observed outcomes.

▶ Therefore, ReFeX-LASSO leads to an estimator with no clear variance expression.

Solution: block bootstrap.
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Confidence interval via a block bootstrap

▶ The bootstrap sample is only used in the feature selection step of ReFeX-LASSO.

– That being said, for each iteration, we still use the same graph G to generate features but
then we use the bootstrap sample of these features to do selection.

– The intuition behind using the original graph for feature generation is that we view the
graph as fixed and the correlation structure of all features are then induced by this graph.

▶ Kojevnikov (2021) develops consistency results of block bootstrap for a class of network
processes under strong technical assumptions on both the network process itself and the
graph structure.

– As a simple example, if the graph consists of disjoint clusters of same size, then the
assumptions on the graph structure in Kojevnikov (2021) would be satisfied.
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Confidence interval via a block bootstrap

Algorithm 4 Block bootstrap for ReFeX-LASSO

Input: Graph G = (V , E), assignment vector w ∈ {0, 1}n, number of bootstrap samples B.
Output: Confidence interval for τ .
1: Collect the assignment wi and outcome yi for each unit i . Record the stopping time for ReFeX-LASSO T ∗.
2: Use k-hop max clustering with k = T ∗ + 1 to divide n units into C clusters C1, · · · , CC .
3: for b = 1 to B do
4: Sample C clusters with replacement from C1, · · · , CC .
5: Construct the b-th bootstrap sample with units from sampled clusters.
6: Rerun ReFeX-LASSO with the original sample for feature generation and the bootstrap sample for feature

selection.
7: Use the covariates returned from last step as well as the bootstrap sample to get estimate of τ , τ̂b.
8: end for
9: Repeat line 2-8 for ℓ times and obtain ℓ · B bootstrap estimates in total.

10: Compute the α/2-th quantile q∗α/2 and the (1−α/2)-th quantile q∗1−α/2 of the sample of all bootstrap estimates

τ̂ 1, · · · , τ̂ ℓB .
11: Return

[
q∗α/2, q

∗
1−α/2

]
as the (1− α)× 100% confidence interval for τ .
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Insurance adoption data analysis

The data were collected from a field experiment conducted in rural China (Cai et al., 2015).

▶ A random subset of farmers were provided with intensive information sessions about an
insurance product.

▶ Cai et al. (2015) find that the diffusion of insurance knowledge drove network effects in
product adoption.

▶ Though we know that network effects do exist, defining an exact exposure model is
difficult.
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Insurance adoption data analysis

Estimator Estimate Standard Error
DM 0.078 ——
Hájek 1hop (q = 0.75) 0.163 ——
τ̂chin 0.122 0.056
τ̂num 0.178 0.027
τ̂refex-lasso 0.178 0.043

Table: Estimates and standard errors of different estimators for the global average treatment effect on
insurance adoption Cai et al. (2015).

▶ τ̂chin is the estimator in Chin (2019) that adjusts for four covariates: the fraction of
treated neighbors, the number of treated neighbors, the fraction of treated neighbors in
2-hop neighborhoods and the number of treated neighbors in 2-hop neighborhoods.

▶ τ̂num only adjusts for the number of treated neighbors.
▶ τ̂refex-lasso is the ReFeX-LASSO based regression adjustment estimator.
▶ The standard errors for τ̂num and τ̂chin were calculated assuming that the linear model is

the true model while the standard error for τ̂refex-lasso was calculated from block bootstrap.
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Summary

Interference brings challenges to causal inference. In this talk,

▶ we presented valid testing procedures for interference in A/B tests with increasing
allocation.

▶ we presented a method that estimates the global average treatment effect under network
interference.
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Bramoullé, Y., Djebbari, H., and Fortin, B. (2009). Identification of peer effects through social
networks. Journal of econometrics, 150(1):41–55.

Cai, J., De Janvry, A., and Sadoulet, E. (2015). Social networks and the decision to insure.
American Economic Journal: Applied Economics, 7(2):81–108.

Chin, A. (2019). Regression adjustments for estimating the global treatment effect in
experiments with interference. Journal of Causal Inference, 7(2).

Fisher, R. A. (1925). Statistical Methods for Research Workers. Number 3. Oliver and Boyd.

References 66



References II

Friedlander, D. and Robins, P. K. (1995). Evaluating program evaluations: New evidence on
commonly used nonexperimental methods. The American Economic Review, pages 923–937.

Halloran, M. E. and Struchiner, C. J. (1995). Causal inference in infectious diseases.
Epidemiology, pages 142–151.

Hamilton, W., Ying, Z., and Leskovec, J. (2017). Inductive representation learning on large
graphs. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R., editors, Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc.

Hemerik, J. and Goeman, J. (2018a). Exact testing with random permutations. Test,
27(4):811–825.

Hemerik, J. and Goeman, J. J. (2018b). False discovery proportion estimation by
permutations: confidence for significance analysis of microarrays. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 80(1):137–155.

References 67



References III

Henderson, K., Gallagher, B., Li, L., Akoglu, L., Eliassi-Rad, T., Tong, H., and Faloutsos, C.
(2011). It’s who you know: graph mining using recursive structural features. In Proceedings
of the 17th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 663–671.

Holtz, D., Lobel, R., Liskovich, I., and Aral, S. (2020). Reducing interference bias in online
marketplace pricing experiments. arXiv preprint arXiv:2004.12489.

Hong, G. and Raudenbush, S. W. (2006). Evaluating kindergarten retention policy: A case
study of causal inference for multilevel observational data. Journal of the American
Statistical Association, 101(475):901–910.

Imbens, G. W. and Rubin, D. B. (2015). Causal inference in statistics, social, and biomedical
sciences. Cambridge University Press.

Johari, R., Li, H., Liskovich, I., and Weintraub, G. Y. (2022). Experimental design in two-sided
platforms: An analysis of bias. Management Science, 68(10):7069–7089.

References 68



References IV

Kipf, T. N. and Welling, M. (2017). Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations.

Kojevnikov, D. (2021). The bootstrap for network dependent processes. arXiv preprint
arXiv:2101.12312.

Manski, C. F. (2013). Identification of treatment response with social interactions. The
Econometrics Journal, 16(1):S1–S23.

Pouget-Abadie, J., Saint-Jacques, G., Saveski, M., Duan, W., Ghosh, S., Xu, Y., and Airoldi,
E. M. (2019). Testing for arbitrary interference on experimentation platforms. Biometrika,
106(4):929–940.

Puelz, D., Basse, G., Feller, A., and Toulis, P. (2022). A graph-theoretic approach to
randomization tests of causal effects under general interference. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 84(1):174–204.

Riccio, J. et al. (1989). Gain: Early implementation experiences and lessons. california’s greater
avenues for independence program.

References 69



References V

Rogers, T. and Feller, A. (2017). Intervening through influential third parties: Reducing
student absences at scale via parents. Work. Pap., John F. Kennedy Sch. Gov., Harvard
Univ., Cambridge, MA.

Rosenbaum, P. R. (2007). Interference between units in randomized experiments. Journal of
the american statistical association, 102(477):191–200.

Sinclair, B., McConnell, M., and Green, D. P. (2012). Detecting spillover effects: Design and
analysis of multilevel experiments. American Journal of Political Science, 56(4):1055–1069.

Sobel, M. E. (2006). What do randomized studies of housing mobility demonstrate? causal
inference in the face of interference. Journal of the American Statistical Association,
101(476):1398–1407.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), pages 267–288.

Toulis, P. and Kao, E. (2013). Estimation of causal peer influence effects. In International
conference on machine learning, pages 1489–1497.

References 70



References VI

Ugander, J. and Yin, H. (2020). Randomized graph cluster randomization. arXiv preprint
arXiv:2009.02297.

Vovk, V. and Wang, R. (2020). Combining p-values via averaging. Biometrika,
107(4):791–808.

References 71



References

Sources of Figures

https://blog.ml.cmu.edu/2020/08/31/7-causality/

https://www.raybeam.com/focus/inferring-the-effect-of-an-event-using-causal-inference

https://www.fomatmedical.com/randomized-clinical-trials/

Edward K. Kao’s PhD thesis

https://en.wikipedia.org/wiki/A/B_testing

https://sites.bu.edu/causal/

https://towardsdatascience.com/ab-testing-challenges-in-social-networks-e67611c92916

References 72



Thank you!

73



Graph clustering algorithm

To run block bootstrap, a graph clustering algorithm is necessary. In our block bootstrap
algorithm, we utilize the following random graph clustering algorithm (Ugander and Yin, 2020):

Algorithm 5 k-hop-max graph clustering

Input: Graph G = (V ,E ).
Output: Graph clustering C1, · · · , Cc .
1: for i ∈ V do
2: Xi ← U(0, 1);
3: end for
4: for i ∈ V do
5: i ← argmax([Xj for j ∈ Bk(i)]);
6: end for
7: Return C1, · · · , Cc .
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About p-values

▶ One issue with the algorithms proposed is that randomly splitting the data (Algorithm 1)
or the random matching step (Algorithm 2) can inject randomness into the p -value.

▶ In order to de-randomize the procedure, we can run the algorithms many times and
aggregate the p -values.

– Since the p -values can be arbitrarily dependent on each other, we cannot use Fisher’s
method to aggregate the p -values, which requires independence (Fisher, 1925).

– Some possible ways include, e.g., setting p = 2
∑

pi/n (See (Vovk and Wang, 2020) for
more details).
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Testing for interference with more than two experiments

We provide details on how we could generalize our methods for two experiments to more than
two experiments. For testing under general assumption, we

▶ let Inc = {i : Wi,1 = · · · = Wi,K} be the set of units whose treatment didn’t change over
the experiments. Randomly sample a subset of Inc of size n/2. We call the subset Ifoc.
Let Iaux = [n] \ Ifoc.

▶ permute the treaments of auxiliary units as in Algorithm 1.
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Testing for interference with more than two experiments

For testing under time fixed effect assumption, we first provide an illustration here.

Treatment

Control

Units

Experiments/Time

Match units
Permute
“Horizontally”

Matched
pairs

Figure: An illustration of extension of Algorithm 2 to more than two experiments. Pairs of units are
matched and the outcomes of paired units are permuted together across experiments.

Extra Details 77



Testing for interference with multiple experiments

Some differences between Algorithm 2 and its extension to multiple experiments.

▶ The choice of I0 and I1.
– I0 = {i : Wi,1 = · · · = Wi,k = 0} is the set of units that are in the control group in all

experiments.
– I1 = {i : Wi,K−1 = Wi,K = 1} is the set of units that are in the treatment group in the last

two experiments (i.e. units that are treated in at least two experiments).

▶ The way we permute the assignment matrix.

– Let Si = {k : Wi,k = 1} be the set of experiments in which unit i is treated.

– We randomly permute outcomes across Si : Ỹ
(b)
i,k = Yi,σi,b(k) and Ỹ

(b)
m(i),k = Ym(i),σi,b(k) for all

k ∈ Si , where σi,b is a random permutation of Si .
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The theorem used to prove the validity results

We make use of the following theorem in (Hemerik and Goeman, 2018a,b, Theorem 2).

Theorem (Random permutations)

Let A1,A2, . . . ,An ∈ A be n random variables. Let Sn denote the set of all permutations on
[n]. Assume that

1. G ⊂ Sn is a subgroup;

2. For any σ ∈ G, A = (A1, . . . ,An)
d
= (Aσ(1), . . . ,Aσ(n)) = Aσ.

If σ1, . . . , σB are drawn independently uniformly from G, then for any test statistic T , the
p -value

p =
1

B + 1

(
1 +

B∑
b=1

1 {T (A) ≤ T (Aσ)}

)
(9)

satisfies
P [p ≤ α] ≤ α. (10)

for any α ∈ (0, 1).
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