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1 Introduction

When estimating treatment effects, the golden standard is to conduct a randomized experiment
and then contrast outcomes associated with the treatment group and the control group. How-
ever, in many cases, randomized experiments are either conducted with a much smaller scale
compared to the size of the target population or accompanied with certain ethical issues and thus
hard to implement. Therefore, researchers usually rely on observational data to study causal
connections. The downside is that the unconfoundedness assumption, the key to validate the use
of observational data is hard to verify and almost always violated. Hence, any conclusion drawn
from observational data should be further analyzed with great care. Given the richness of obser-
vational data and usefulness of experimental data, researchers hope to develop credible method
to combine the strength of the two. In this paper, we consider a setting where the observational
data contain the outcome of interest as well as a surrogate outcome while the experimental data
contain only the surrogate outcome. We propose a simple estimator to estimate the average
treatment effect of interest using both the observational data and the experimental data.

The remainder of the paper is organized as follows. Section 2 introduces the basic setup.
In Section 3 we develop our method to estimate the treatment effect of primary outcome by
using information from the experimental study. In Section 4, we discuss several widely-studied
extensions to the basic setup and give concrete solution to each extension. Section 5 compare
several different methods through simulations.

2 Setup

Suppose we want to estimate the treatment effect of an intervention on some primary outcome
Y P ∈ R. For each unit i in the observational study, along with the treatment assignments Wi,
the outcome Y P

i , we also observe another surrogate outcome Y S
i ∈ R and record a number of pre-

treatment covariates Xi. Here, the surrogate outcome Y S can be any variable that change after
treatment. In this paper, we mainly discuss the case that Y S is one-dimensional, but our method
can be generalized naturally to multi-dimensional surrogate outcome. If the unconfoundedness
assumption is satisfied, i.e.

Yi(1), Yi(0) ⊥⊥ Wi|Xi,
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then either IPW estimator or AIPW estimator suffices for our propose. However, there exist
many settings under which researchers do not believe unconfoundedness holds, hence makes
estimating treatment effect using only the observational study impossible. To this end, we assume
that there is another prior study on the surrogate outcome Y S such that unconfoundedness
holds. Typically, this can be a small-scale randomized experiment on the surrogate outcome. In
summary, we assume that we have two samples: the observational sample and the experimental
sample. There is a (Xi,Wi, Y

S
i , Y P

i ) tuple associated with every unit i in our observational
sample and a (Xi,Wi, Y

S
i ) tuple associated with every unit i in the experimental sample. The

experimental sample size NE is considered to be much smaller than the observational sample
size NO. We are interested in the quantity

τP = E[Y P
i (1)− Y P

i (0)|Gi = O],

where Gi is the indicator function of which sample unit i belongs to. We note by passing that
this is exactly the same setup as in Athey et al. [2020].

3 A simple estimator

We develop our simple estimator in this section. To be able to point-identify the ATE of Y P ,
we assume the following structural model of Y P :

Y P
i = f(Xi, Y

S
i , ǫi), ǫi ⊥⊥ Xi, Y

S
i , (1)

i.e. all the effect of treatment on the primary outcome is mediated through the surrogate
outcome. Therefore, the surrogate outcome together with pre-treatment covariates determine
the primary outcome. Now, τP is identifiable.

To see this, define
τS(x) = E[Y S

i (1)− Y S
i (0)|Xi = x]

and
µ(x, y) = E

[

Y P
i |Xi = x, Y S

i = y,Gi = O
]

.

then E
[

Y P
i (w)

]

is just E[µ(Xi, Y
S
i (w))]. The joint distribution of Xi and Y S

i (w) is identifiable
from the experimental sample because of unconfoundedness. There is a concrete model that we
know well: Y P

i = ρY S
i +f(Xi)+ ǫi where ǫi is independent with Y S

i and Xi. For such model, we
can use Robinson residual-in-residual method to estimate ρ and the final estimate of the ATE
would be consistent. For the general case, we can estimate the τP as follows:

1. Regress Y P on Y S and X to obtain an estimate of µ, µ̂.

2. Estimate the conditional average treatment effect τ(x) on the surrogate outcome Y S , obtain
an estimate of τ , τ̂ .

3. Define Ŷ S
i (1) = Y S

i if Wi = 1 and Ŷ S
i (1) = Y S

i + τ̂(Xi) if Wi = 0.

4. Now we can estimate E
[

Y P
i (1)

]

by 1
NO

∑NO

i=1 µ̂(Xi, Ŷ
S
i (1)).
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5. Define Ŷ S
i (0) = Y S

i if Wi = 0 and Ŷ S
i (0) = Y S

i − τ̂(Xi) if Wi = 1.

6. Now we can estimate E
[

Y P
i (0)

]

by 1
NO

∑NO

i=1 µ̂(Xi, Ŷ
S
i (0)).

7. The final estimate would be τ̂P = 1
NO

∑NO

i=1 µ̂(Xi, Ŷ
S
i (1))− 1

NO

∑NO

i=1 µ̂(Xi, Ŷ
S
i (0)).

With the above procedure, to estimate the ATE on the primary outcome, we only need one
model for the conditional response function µ and one model for CATE estimation. In the next
section, we will discuss different variants of the procedure above in different scenarios.

4 Applications

In the previous section, we develop a general procedure to combine both the experimental sample
and the observational sample. It relies on first estimating the conditional average treatment
effect on the surrogate outcome and then correcting the surrogate outcomes in the observational
sample. Estimating the conditional agverage treatment effect (CATE) is usually a case-by-
case problem and involves different estimation methods for different settings. In this section,
we discuss four settings where we can apply the estimator in Section 3 with different versions
of step 2. We will also discuss the setting where we drop the unconfoundedness assumption on
experimental sample. In fact, as long as the conditional average treatment effect τ is identifiable,
unconfoundedness is not necessary.

4.1 Different support of pre-treatment covariates

The first scenario that we consider is the setting in Kallus et al. [2018] where the support of pre-
treatment covariates in the experimental sample is different from the support of pre-treatment
covariates in the observational sample. This is usually the case in practice since the experimental
sample typically comes from historical data and we cannot guarantee that the experimental study
and the observational study are targeting exactly the same population. Under this setting, if
we only use the experimental sample to estimate the conditional average treatment effect, we
need to extrapolate on the observational sample. Such extrapolation will be more problematic if
the sample size of the experimental sample is much smaller compared to the sample size of the
observational sample. Therefore, for our propose, we should calibrate our conditional average
treatment estimate on the experimental sample. Kallus et al. [2018] noticed that if we define
eE(x) = P(Wi = 1|Xi = x,Gi = E) and qE(Xi) =

Wi

eE(Xi)
− 1−Wi

1−eE(Xi)
, then

E[qE(Xi)Yi|Xi] = τ(Xi).

Define ω(x) to be E[Yi|Wi = 1, Xi = x,Gi = O]− E[Yi|Wi = 0, Xi = x,Gi = O], then the above
observation motivates the following procedure to estimate the conditional average treatment
effect of the surrogate outcome on the observational sample:

1. Run any CATE algorithm on the observational sample, obtain ω̂.
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2. Solve the following optimization problem to obtain θ̂:

θ̂ = argmin
θ

NE
∑

i=1

(qE(Xi)Yi − ω̂(Xi)− θTXi)
2

3. τ̂(x) = θ̂Tx+ ω̂(x).

Now we can use the above estimate of τ for the estimator described in Section 3. Essentially,
the idea here is to use a loss function to estimate the difference between ill-posed target ω and
the true quantity of interest τ . A more general version can be obtained if we do not fit a linear
function but a non-parametric function of Xi.

4.2 IV setting in the experimental sample

In this section, we drop our unconfoundedness assumption on the experimental sample and
consider the instrumental variable setting which is widely-studied in econometrics literature.

4.2.1 Constant effect

We start with the simplest instrumental variable setting where the effect is constant. In partic-
ular, we consider a setting where in the experimental sample we have an instrumental variable
Z with the following structural model:

Y S
i = αTXi +Wiτ + ǫi, ǫi ⊥⊥ Zi

Wi = βTXi + Ziγ + ξi.

Such model is introduced in almost every econometrics textbook, for example, in Angrist and Pischke
[2009]. It can be seen easily that the parameter τ is exactly the conditional average treatment
effect of Y S . It is well known that we can then estimate it by two-stage least squares (2SLS) in
usual instrumental variable literature.

4.2.2 Nonparametric IV

Now we consider a more general instrumental variable setting. Specifically, we consider the
following model:

Y S
i = τ(Xi)Wi + g(Xi) + ǫi, ǫi ⊥⊥ Zi

This is a special case of the more general nonparametric instrumental variable model [Newey and Powell,
2003, Hall and Horowitz, 2005, Horowitz, 2011]. Here, to estimate τ , we can follow [Hall and Horowitz,
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2005]. First, note that

E[Y |W = 1, Z = z] = E[τ(X)|W = 1, Z = z] + E[g(X)|W = 1, Z = z]

=

∫ 1

0

(τ(x) + g(x))fX|W=1,Z(x, z)dx

=

∫ 1

0

(τ(x) + g(x))
fXZ|W=1(x,z)

fZ|W=1(z)
dx

Therefore,

E[Y |W = 1, Z = z]fZ|W=1(z) =

∫ 1

0

(τ(x) + g(x))fXZ|W=1(x, z)dx,

so

E[Y |W = 1, Z = z]fZ|W=1(z)fXZ|W=1(u, z) =

∫ 1

0

(τ(x) + g(x))fXZ|W=1(x, z)fXZ|W=1(u, z)dx

(2)
If we define

t(x, u) =

∫ 1

0

fXZ|W=1(x, z)fXZ|W=1(u, z)dz

and integrate both sides of (2) with respect to z, then we have

E[Y fXZ|W=1(u, Z)] =

∫ 1

0

(τ(x) + g(x))t(x, u)dx

for any u ∈ [0, 1] where the expectation on left hand side is taken with respect to the conditional
joint distribution (Y, Z|W = 1). If we define

(Th)(u) =

∫ 1

0

h(x)t(x, u)dx

and
r(u) = E[Y fXZ|W=1(u, Z)]

then we arrive at the following operator equation

r(u) = (T (τ + g))(u).

We can estimate τ + g using Hall-Horowitz estimator. Similarly, we have another operator
equation where we only have g by conditioning on W = 0. With that equation, we are able to
estimate g. Then we can estimate τ by taking the difference.

Hall and Horowitz [2005] give good theoretical properties of this method. However, it involves
estimating density functions which is unstable in practice. In fact, Hall and Horowitz [2005] aims
to address the general nonparametric IV problem while we only care about τ(x).

With our structural model assumption, Athey et al. [2019] propose the Generalized Random
Forests (GRF) to estimate the conditional average treatment effect τ . We recommend to use
GRF for estimating τ . In fact, one advantage of using GRF is that it can be generalized to the
setting where W is no longer binary but a real number.
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4.3 IV setting with different support of pre-treatment covariates

In this section, we combine our two considerations above. We want to address the setting where
we have different support of pre-treatment covariates and a nonparametric instrumental variable
model for the experimental sample. We first note that if we let

µ(x) = E[Y |X = x]

π(x) = E[Z|X = x]

e(x) = E[W |X = x]

m(x) = E[Y Z|X = x]

γ(x) = E[WZ|X = x]

Then
τ(x)[γ(x) − e(x)π(x)] − [m(x) − µ(x)π(x)] = 0.

Therefore, we can write

τ(x) = argmin
τ :X→R

E[(τ(x)[γ(x) − e(x)π(x)] − [m(x) − µ(x)π(x)])2 ].

It is possible to directly estimate τ with the above loss function but we found that it does not
work well when we have multi-dimensional pre-treatment covariates as we need to estimate many
nuisance parts and the errors may aggregate. However, this loss defining property of τ motivates
the following procedure (which we abbreviate by Kallus IV):

1. Run any CATE estimation algorithm Q on {Xi,Wi, Y
S
i }mi=1 to get an estimate ω̂.

2. Solve the following optimization algorithm on the experimental sample:

θ̂ = argmin
θ

n
∑

i=1

(

[m̂(xi)− µ̂(xi)π̂(xi)]− (θTxi + ω̂(xi))× [γ̂(xi)− ê(xi)π̂(xi)]]
)2

3. Use ω̂(x) + θ̂Tx as our estimate of CATE on the surrogate.

Essentially we are adapting the procedure in Kallus et al. [2018] with a different objective func-
tion when estimating θ. Similar to our remark in the unconfounded case, we can actually fit a
non-parametric function of Xi instead of a linear function. However, we found that this will give
us rather unstable estimates when we have many covariates.

5 Simulations

In the previous sections, we outlined a procedure to estimate the average treatment effect of
the primary outcome given prior information in the experimental sample and considered three
scenarios in which we can utilize our procedure described in Section 3. In this section, we
compare several estimators through simulations. In particular, we hope to compare our procedure
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with the canonical imputation estimator in Athey et al. [2020] when we have an unconfounded
experimental sample.

We consider two settings: there is no confounding in the experimental sample (i.e., we have
either a randomized experiment or an unconfounded experiment) and there is confounding (we
assume a nonparametric IV model for the experimental sample). For each setting, we consider
two subcases: the support of the pre-treatment covariates in the experimental sample is the same
as the support of pre-treatment covariates in the observational sample and the support of the pre-
treatment covariates in the experimental sample is not the same as the support of pre-treatment
covariates in the observational sample (but they do overlap). When there is no confounding,
we compare three estimators: the imputation estimator in Athey et al. [2020], our estimator
with τ(x) estimated by generalized random forest and our estimator with τ(x) estimated by the
approach in Kallus et al. [2018]. When there is confounding, both the imputation estimator and
the approach in Kallus et al. [2018] are no longer valid as they require the experimental sample
to be unconfounded. Hence, we will compare two estimators: our estimator with τ(x) estimated
by generalized random forest and our estimator with τ(x) estimated by Kallus IV.

We work with the following data generating mechanism:

Xi ∼ N (0, Ip×p), ǫi ∼ N (0, 1), Zi ∼ Binom(1/3),

Qi ∼ Binom(1/(1 + e−ωǫi)), Wi = Zi ∧Qi,

Y S
i = µ(Xi) + (Wi − 1/2)τ(Xi) + ǫi.

and

Y P
i =

κ
∑

j=1

X
(j)
i + (X

(p)
i )2 + 2Y S

i + (X
(p−2)
i +X

(p−1)
i X

(p−3)
i )Y S

i + ξi

i.e., Y P = f(Y S , X, ξ) where ξ is independent noise. This is the same setting as in the appendix
of Athey et al. [2019].

Now, we can adjust several parameters in the data generating mechanism to satisfy different
conditions.

1. Presence of confounding: we vary ω to be either 0 or 1. If ω = 0, there is no confound-
ing, otherwise there is confounding and we are in the nonparametric IV model.

2. Sparsity of the signal: κτ ∈ {2, 4}.

3. Additivity of the signal: When true, τ(x) =
∑κτ

j=1 max{0, xj}; when false, τ(x) =

max{0,
∑κτ

j=1 xj}.

4. Presence of nuisance terms: When true, µ(x) = 3max{0, x5}+3max{0, x6} or µ(x) =
3max{0, x5 + x6} depending on the additive signal condition; when false, µ(x) = 0.

5. Identical support: When true, we assume the distribution of the covariates in the
experimental sample and that in the observational sample are the same; when false,
Xi ∼ N ([1, · · · , 1]T , Ip×p) in the observational sample.
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ω κτ Additivity Nuisance Identical Support MC Estimate GRF Imputation Kallus Winner

0 2 Yes Yes Yes 1.62 0.19 1.02 0.34 GRF

0 2 Yes No Yes 1.58 0.12 0.22 0.24 GRF

0 4 No Yes Yes 2.10 0.22 1.13 0.55 GRF

0 4 No No Yes 2.10 0.14 0.26 0.41 GRF

0 2 Yes Yes No 8.73 30.91 43.38 72.83 GRF

0 2 Yes No No 8.67 27.28 36.00 6.45 Kallus

0 4 No Yes No 8.11 18.56 29.07 51.25 GRF

0 4 No No No 8.11 15.98 23.29 7.05 Kallus

Table 1: Simulation results for ω = 0

Here, we fix the dimension of Xi, p to be 10, the experimental sample size, n to be 300 and the
observational sample size, m to be 1000. We are interested in the treatment effect on Y P . We
compare different methods based on mean squared erro (MSE). To calculate MSE, we use Monte
Carlo method to estimate the true value of ATE and generate 200 realizations.

Table 1 and 2 show the simulation results. We see that when we have identical support of pre-
treatment covariates, GRF performs better than the other two methods regardless of confounding
issue. This makes sense since when the support does not change, we do not actually need to
extrapolate, hence the Kallus method won’t improve much. When the support is different,
generally Kallus and Kallus IV are also competitive. In fact, when there is confounding, Kallus
IV performs better than GRF.

To further investigate the case of different support, we change the above setting slightly.
Now we assume that when the support is not identical, the support of pre-treatment covariates
of the experimental sample will be contained in the support of pre-treatment covariates of the
observational sample (instead of just overlap). Specifically,

5a Identical support: When true, we assume the distribution of the covariates in the exper-

imental sample and that in the observational sample are the same: X
(j)
i ∼ Uniform(−1, 1);

when false, X
(j)
i ∼ Uniform(−1, 1) in the experimental sample and Xi ∼ N (0, Ip×p) in the

observational sample.

Table 3 shows the simulation results. We see that similar to the simulation results in the
previous two tables, Kallus/Kallus IV performs better than GRF when we have different support.

6 A real data example

In this section, we investigate the performance of our procedure on a real dataset. We utilize the
famous Tennessee STAR study [Achilles et al., 2008]. This dataset is also used in Kallus et al.
[2018] and Athey et al. [2020]. We use it in a different manner. Specifically, we select the
following covariates for each student: gender, race, birth month, birthday, birth year, free lunch
given or not, teacher id, student home location. We focus on two outcomes: average grade in
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ω κτ Additivity Nuisance Identical Support MC Estimate GRF Kallus IV Winner

1 2 Yes Yes Yes 1.63 0.46 0.65 GRF

1 2 Yes No Yes 1.55 0.26 0.80 GRF

1 4 No Yes Yes 2.12 0.49 0.64 GRF

1 4 No No Yes 2.11 0.30 0.51 GRF

1 2 Yes Yes No 8.73 31.60 28.27 Kallus IV

1 2 Yes No No 8.72 27.84 10.80 Kallus IV

1 2 No Yes No 6.35 15.00 31.79 GRF

1 2 No No No 6.33 12.64 11.01 Kallus IV

1 4 No Yes No 8.11 17.93 32.65 GRF

1 4 No No No 8.09 15.35 16.72 GRF

1 4 Yes No No 17.30 109.78 28.89 Kallus IV

1 4 Yes Yes No 17.38 114.74 42.00 Kallus IV

Table 2: Simulation results for ω = 1

ω κτ Additivity Nuisance Identical Support MC Estimate GRF Kallus/Kallus IV Winner

0 2 Yes Yes No 1.61 0.60 0.30 Kallus

0 2 Yes No No 1.60 0.58 0.29 Kallus

0 4 No Yes No 2.11 1.12 0.54 Kallus

0 4 No No No 2.10 1.16 0.45 Kallus

1 2 Yes Yes No 1.60 0.77 0.71 Kallus IV

1 2 Yes No No 1.60 0.70 0.68 Kallus IV

1 2 No Yes No 1.34 0.61 0.83 GRF

1 2 No No No 1.35 0.58 0.71 GRF

1 4 No Yes No 2.10 1.21 0.66 Kallus IV

1 4 No No No 2.08 1.24 0.57 Kallus IV

1 4 Yes No No 3.21 2.37 0.60 Kallus IV

1 4 Yes Yes No 3.23 2.26 0.54 Kallus IV

Table 3: Simulation results, inclusion of the support
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nexp nobs GRF Imputation AIPW

300 1000 7.08 13.19 167.52

200 1500 9.36 12.76 167.43

500 2000 4.54 7.43 166.08

Table 4: STAR study simulation

nexp nobs GRF Imputation AIPW τ

300 1000 6.64 7.90 -5.21 7.62

200 1500 6.89 8.21 -5.24 7.62

500 2000 6.70 8.06 -5.21 7.62

Table 5: STAR study simulation, empirical mean and true treatment effect

year 1 and average grade in year 3. We remove all the records with missing outcome variables.
Now, in this study, the treatment is whether or not the student is in small class (treatment) or
regular class (control). After cleaning the data, we have a dataset with 2498 units, 9 covariates,
1 treatment variable and 2 outcome variables. We use the method in Athey et al. [2020] to
generate a large population, which we view as the ground truth. We call this ground truth
dataset Dgt. To assess different methods, we do the following:

1. Use Dgt to calculate the average treatment effect of average grade in year 3. This estimate
τgt will be viewed as the ground truth.

2. Repeat the following steps 500 times.

3. Sample nexp rural or inner-city students together with all the covariates except the student
location covariate, treatment variable and average grade in year 1. This is our experimental
sample DE .

4. Sample nobs/4 rural or inner-city students in control group that are not sampled in ex-
perimental sample, sample nobs/4 rural or inner-city students in treatment group whose
year 1 average grade is in the lower half among treated rural or inner-city students, sample
nobs/4 urban or suburban students in control group and finally sample nobs/4 urban or
suburban students in treatment group whose year 1 average grade is in lower half among
treated urban or suburban students. This is our observational sample (which is confounded
because we remove students with higher scores selectively from the population) DO.

5. Use different methods to estimate τgt based on DE and DO.

6. Compare based on mean squared error (MSE).
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We will only compare GRF and imputation estimator as the Kallus method involves estimat-
ing the coefficient of a linear function of the covariates but we only have categorical variables.
We also include the mean squared error of the AIPW estimator (notice that AIPW estimator
requires the sample to be unconfounded) on observational sample. Table 4 gives the results.
We see that in general the GRF estimator outperforms the imputation estimator and these two
estimators all outperform the AIPW estimator significantly. In particular, as Table 5 shows, the
empirical mean of AIPW estimates is actually a negative number (and the true treatment effect
is a positive number) and is far from the true treatment effect.

7 Conclusion

In this paper, we proposed a simple procedure to estimate the average treatment effect of the
primary outcome in observational study by utilizing an experimental study for the surrogate
outcome. We showed that our procedure can be applied in many settings so long as we can
estimate the conditional average treatment effect of the surrogate outcome. We compared several
methods through simulations and showed that our procedure gives better estimate in terms of
mean square error than the canonical imputation estimator in Athey et al. [2020].
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