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Abstract

In the past decade, the technology industry has adopted online randomized controlled ex-
periments (a.k.a. A/B testing) to guide product development and make business decisions. In
practice, A/B tests are often implemented with increasing treatment allocation: the new treat-
ment is gradually released to an increasing number of units through a sequence of randomized
experiments. In scenarios such as experimenting in a social network setting or in a bipartite
online marketplace, interference among units may exist, which can harm the validity of simple
inference procedures. In this work, we introduce a widely applicable procedure to test for inter-
ference in A/B testing with increasing allocation. Our procedure can be implemented on top of
an existing A/B testing platform with a separate flow and does not require a priori a specific
interference mechanism. In particular, we introduce two permutation tests that are valid under
different assumptions. Firstly, we introduce a general statistical test for interference requiring
no additional assumption. Secondly, we introduce a testing procedure that is valid under a time
fixed effect assumption. The testing procedure is of very low computational complexity, it is
powerful, and it formalizes a heuristic algorithm implemented already in industry. We demon-
strate the performance of the proposed testing procedure through simulations on synthetic data.
Finally, we discuss one application at LinkedIn, where a screening step is implemented to detect
potential interference in all their marketplace experiments with the proposed methods in the

paper.

Keywords: causal inference, SUTVA, online experiments, hypothesis testing, permutation test.

1 Introduction

The technology industry has adopted online randomized controlled experiments, also known as
A /B testing, to guide product development and make business decisions [Kohavi et al., 2013,
2020]. In the past decade, firms have developed a dynamic phase release framework in which a
new treatment (such as a new product feature) is gradually released to an increasing number of
units in the target population through a sequence of randomized experiments [Kohavi et al., 2020].
Companies including Google, Microsoft, LinkedIn, and Meta all developed in-house platforms that
implement this framework at-scale [Tang et al., 2010, Kohavi et al., 2013, Bakshy et al., 2014, Xu
et al., 2015]. Contrary to the sophisticated engineering design of such platforms, the strategy to
analyze A /B testing is relatively simple—often, only the most powerful experiment in the sequence
is used to provide a summary of the treatment effect, using tools from classical causal inference
assuming independence among test units [Imbens and Rubin, 2015].



In scenarios such as experimenting in a social network setting or in a bipartite online marketplace,
interference among units may exist. Thus, a natural question is whether such interference harms the
validity of simple inference procedures. Specific designs have been proposed to test or correct for the
interference effects in different applications [Saveski et al., 2017, Eckles et al., 2017, Ugander et al.,
2013, Pouget-Abadie et al., 2019a, Johari et al., 2022]. However, these designs are limited to specific
applications and often require significant engineering work to implement in parallel to the existing
A/B testing infrastructure in most companies. Even when such designs are implemented, their
complex nature often results in lower throughput and can slow down the decision process.

In this work, we introduce a widely applicable procedure to test for interference in generic online
experiments. The proposed method utilizes data from multiple experiments in the sequence. It can
be implemented on top of an existing A /B testing platform with a separate flow and does not require
a priori the knowledge of the underlying interference mechanism. Once implemented, this test can
be run as a standard screening for any A/B test running on the platform. If the test suggests
that no interference exists, the experimenter can proceed with classical causal inference analysis
with confidence; if the test suggests that some form of interference does exist, the experimenter
may need to redesign experiments in a more delicate way. At the platform level, such screening
could provide valuable and timely feedback on the choice of designs and help experimenters update
development roadmaps accordingly.

1.1 A motivating example and our contribution

The most straightforward statistical analysis following A /B tests is to compute the difference-in-
means estimator, i.e., the difference in the average of outcomes of the treatment group and that of
the control group. Under the classical Stable Unit Treatment Value Assumption (SUTVA), which
requires that the potential outcomes for any unit do not vary with the treatments assigned to
other units, one can easily show that the difference-in-means estimator will be close to the causal
effect as long as the sample size is large [Imbens and Rubin, 2015]. This implies that when we
compute the difference-in-means estimator for any single randomized experiments in an A/B test
with increasing allocation, the value of the estimator should not change by much. However, in some
real-world scenarios, we observe drastic change in the difference-in-means estimators throughout
the experiments. In Figure 1, we show an example from an A/B test implemented by LinkedIn. In
this example, we see that the difference-in-means estimator decreases as the treatment is released
to more units. We naturally wonder: What causes this phenomenon? Could it be purely due to
randomness? Is the SUTVA assumption violated in this case?

One plausible explanation for this phenomenon is the existence of interference, i.e., when treatment
assigned to one unit may affect observed outcomes for other units. One form of interference is
marketplace competition. Imagine a new treatment that can help units perform better in the
market. For any particular unit, the treatment brings benefit, but when more of the other units
are treated, the other units become more competitive and thus negatively impact the performance
of that particular unit. Therefore, in these cases, we often observe that the difference-in-means
estimator decreases with treatment probability. Indeed, the experiments in Figure 1 were run
in a setting with marketplace competition. One other common form of interference is through
social networks. People’s behaviors tend to be positively correlated with those of others connected
to them in the network. Think about a treatment that encourages users to comment on a social
media platform: users tend to comment more when they see comments from friends. In these cases,
we usually observe the difference-in-means estimator increasing with treatment probability.
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Figure 1: An A/B test implemented by LinkedIn with increasing allocation. On the z-axis, we
show the percentage of units that are in the treatment group; on the y-axis, we show the value of
the difference-in-means estimator. Note that A and B stand for different outcome metrics.

In practice, however, the structure of interference can be more complicated than the two apparent
forms discussed in the above paragraph. Often, experimenters manually examine the difference-in-
means plot and decide whether to send the job to other experimentation platforms that deal with
interference more carefully. We need a way to formally test whether interference exists.

In this work, we introduce statistical testing procedures that test for interference in A/B testing
with increasing allocation. The methods we propose are scalable and parallelable. They are also
agnostic to interference mechanism: even if we have no knowledge of the interference structure, the
testing procedure is still valid. Knowledge of the interference structure can, however, be helpful in
increasing the power of the testing procedure. We introduce two different testing strategies under
different assumptions in Sections 3.1 and 3.2. In Section 3.1, we introduce a general statistical test
for interference, a test that requires no additional assumptions. The proposed method is inspired
by the testing procedure proposed by Athey et al. [2018], but it is more powerful than that of
Athey et al. [2018] by making use of multiple experiments. In Section 3.2, we introduce a testing
procedure that is valid under a time fixed effect assumption. The testing procedure is of very
low computational complexity, and it is more powerful than the test proposed in Section 3.1. In
particular, one special case of this method formalizes a heuristic algorithm discussed above, which
decides that interference exists when the difference-in-means estimators are very different.

1.2 Related work

The classical literature on causal inference often assumes that there is no cross-unit interference.
When interference presents, many classical inference methods break down. Interest in causal infer-
ence with interference started in the social and medical sciences [Sobel, 2006, Hudgens and Halloran,
2008]. Since then, one line of work focuses on estimation and inference of treatment effects under
network interference [Tchetgen and VanderWeele, 2012, Toulis and Kao, 2013, Aronow and Samii,
2017, Sussman and Airoldi, 2017, Basse and Feller, 2018, Bhattacharya et al., 2020, Leung, 2020,
Sévje et al., 2021, Savje, 2021, Hu et al., 2022, Li and Wager, 2022]. In order to facilitate estimation,



these works either assume that there are special randomization designs or that the interference has
some restricted form defined by a given network. Applications to A /B testing are also considered in
Ugander et al. [2013], Eckles et al. [2017], and Basse and Airoldi [2018]. One assumption implicitly
made in these works is that the experiment is conducted only once. In the multiple experiments
regime, Viviano [2020] studies the design of two-wave experiments under interference. Yu et al.
[2022] and Cortez et al. [2022] consider estimating the total treatment effects under interference
with data from more than two time steps. Bojinov et al. [2021] and Han et al. [2021] further
investigate the problem in panel experiments. Our work differs from the above works for at least
two reasons: (1) instead of focusing on estimation, we focus on testing whether interference exists
and (2) we do not need to make additional assumptions in order for the testing procedure to be
valid.

In the literature of testing for interference, Bowers et al. [2013] consider model-based approaches,
Pouget-Abadie et al. [2019b] introduce an experimental design strategy, and Aronow [2012] and
Athey et al. [2018] propose conditional randomization tests restricted to a subset of what they call
focal units, and a subset of assignments that make the null hypothesis sharp for focal units. Basse
et al. [2019] and Puelz et al. [2022] further extend this method by using a conditioning mechanism
to allow the selection of focal units to depend on the observed treatment assignment. However,
none of these works addresses the problem of multiple experiments, and their methods tend to have
lower power when directly applied in our setup. To the best of our knowledge, our work is the first
to consider testing interference with a sequence of randomized experiments.

Our work is also related to research on interference in online marketplace experiments (See Basse
et al. [2016], Fradkin [2019], Holtz et al. [2020], Bajari et al. [2021], Wager and Xu [2021], Johari
et al. [2022], Li et al. [2022] among others). This line of work usually requires careful modeling
of the market and the interference mechanism. The testing procedure introduced in this paper, in
contrast, can be applied to arbitrary forms of interference.

2 Problem Setup

We work in a setting where we run a sequence of A/B tests with increasing allocations. Formally,
suppose that there are K experiments on a population of n units. Let 7 be the marginal treatment
probability of the k' experiment. The treatment probabilities satisfy 7 < w9 < --- < 7. For
each experiment k € {1,..., K} and each unit ¢ € {1,...,n}, let

Wi 1, := treatment of unit ¢ assigned in the k™ experiment,
Y, 1. := outcome of unit 4 in the Kt experiment.

Here we assume that W ;, € {0, 1} is a binary treatment variable and that a value of 1 corresponds
to the treatment group while a value of 0 corresponds to the control group.

The experiments are implemented in the following way. In the first experiment, each unit ¢ is
randomly assigned a treatment W; 1, where

W; 1 ~ Bernoulli(71) independently. (1)

In the subsequent experiments, more units are assigned to the treatment group. Specifically, con-
ditioning on the previous treatments, each W; j, is sampled from the following distribution indepen-
dently:

{ Wi ~ Bernoulli (7, — mp—1)/(1 — mp—1)), if W1 = 0; @)

Wixk=1 it Wi1=1



This formulation guarantees that if we look at the k*" experiment alone, then the treatments Wik's
are i.i.d. Bernoulli(ry).

Let Wi.p1:x be the n x K treatment matrix and Y7., 1.5 be the n X K outcome matrix of all units
and all experiments. Let X; € R? be the observed covariates of unit i that do not change over
the course of the experiments. Correspondingly, let X1., € R"*¢ be the matrix of covariates of all
units.

Following the Neyman-Rubin causal model, we assume that potential outcomes Y; p(wim1:x) € R
exist for all wy., 1.6 € {0, 1}"XK and that the observed outcomes satisfy Vi = Y;x(Win1.x).!

The goal is to test the following hypothesis:
Hypothesis 1 (No cross-unit interference). Y; p(wi:n1:x) = Yik(W1:m,1:x) if wi 1.6 = Wi 1:x-

The hypothesis states that the outcomes of unit ¢ depend only on the treatments of unit ¢ and not
on the treatments of others. We call this hypothesis the no cross-unit interference hypothesis.

3 Testing for interference

In this section, we introduce methods that test for the existence of cross-unit interference. For
brevity’s sake, we focus on testing with two experiments. We then discuss further extensions to
multiple experiments in Section 3.5.

Naturally, the first question that occurs is how interference might arise. To formalize this, we
introduce a notion of candidate exposure that captures the potential form of interference. Using
domain knowledge, experimenters can specify the candidate exposure, which can vary from appli-
cation to application. When we consider user-level data, we have a natural social network. Here
experimenters may suspect that a user’s outcome is influenced by treatments of “friends”, i.e.,
users connected through the social network. And thus in this example, some plausible choices of
candidate exposures include the fraction of friends who are treated, and the number of friends who
are treated. When we consider marketplace competition, advertisers are the subjects of treatment.
Here, the sales of an advertiser may be impacted by the treatments of competitors, i.e., advertisers
that sell similar products. Hence, in this application, experimenters can choose candidate exposures
to be the number of treated advertisers that sell products of the same category, or an average of
treatments given to other advertisers weighted by some product similarity metric.

Formally, for each experiment k and each unit ¢, we use H;j, = h;(W_; ) € R™ to denote the
candidate exposure. Here W_;j is the treatments given to all other units except 7 in the Eth
experiment. We use the form h;(W_; ) to emphasize that the candidate exposure depends on
other units’ treatments. We also write Hy.,p = (Hik, Ho, - - - ,Hmk)T € R™™™ to reference the
candidate exposures of all units.

We want to emphasize that for all the tests introduced below, we do not require the candidate
exposure to be correctly specified in order for the tests to be valid. However, the form of the
candidate exposure matters for the power of the tests.

We will then move on to test the hypothesis that no interference exists making use of the candidate

In the literature, a no anticipation effects assumption is often made in such potential outcome models. The
assumption states that the outcome Y depends only on the treatments assigned during and prior to the k't
experiment. With this assumption, the potential outcomes can be written as Y; k(wi.n,1:6) which satisfies Y, =
Yi k(Wiin,1:1). Here, for simplicity, we keep the original notation.



exposure H; ;.. In the following sections, we discuss different strategies to test for interference under
different assumptions.

3.1 Testing under general assumptions

We start with a setting where we have access to a dataset from only one experiment. Suppose that
we collect data on units indexed by ¢ = 1, ..., n, where each unit is randomly assigned to a binary
treatment W; € {0, 1},

W; ~ Bernoulli(7) independently (3)

for some 0 < 7 < 1. For each unit, we observe an outcome of interest Y; € R and some covariates
X; € RP. Athey et al. [2018] proposed a method to test for Hypothesis 1 in this setting.? We sketch
the procedure in Algorithm 1.

Algorithm 1 Testing for interference effect (one experiment).

Input: Dataset D = (Wi, X1, Y1, Hi), exposure function h, test statistic 7.

1. Randomly split the data into two folds. Let Zg and Z,ux be the index set for the first fold
(focal units) and the second fold (auxiliary units). Write the first fold of data as
Dfoc = (Wfom Xfom Y}oc; Hfoc) and the second as Daux = (Wau)u Xaux; Yaux: Haux)~
2. Compute a test statistic T = T(Wioe, Xtoes Yioes Hioe) that captures the importance of H
in predicting Y.
3. Forb=1,...B:
Regenerate treatments for the auxiliary units: Wi(b) ~ Bernoulli(7) for i € Zyyx.

Recompute the candidate exposure for focal units: I;'i(b) = hi(Whoe \{i}» V[N/éﬁz()) for

1€ Ifoc- ~
Recompute the test statistic: 70 = T (Wioe, Xtoes Yioc, Hf(fg)
End For

Output: The p-value
B
b=

szlH <1+Z]I{T(O) gT(b)}>. )

1

Algorithm 1 requires as input a test statistic T' that captures the importance of the candidate
exposure H in predicting outcome Y. As an illustration, assume for now that H; € R. One
plausible choice of the test statistic T (when H; € R) is the following: we run a linear regression
of Yioe ~ Wioe + Xtoc + Hioe, extract the coefficient of Hg,., and take the test statistic T to be
the absolute value of the coefficient. We use this regression coefficient statistic as an example to
explain the intuition of the algorithm. Under the null hypothesis, the candidate exposure H has no
power to predict the outcome Y before or after regenerating treatments, and thus the distribution
of the test statistic 7" will not change after regenerating treatments. Hence, the p-value will be
stochastically larger than Unif[0, 1]. Under the alternative hypothesis, the behavior of the p-value
can be very different. Consider a simple example where H; is the treatment assigned to the closest
friend of unit i and Y; = o' X; + SW; + 60 H; +¢; for some i.i.d. zero mean errors ¢;. In this example,
the original test statistic T'(Wroc, Xtoc, Yioes Hioc) = |0| when the sample size is large. However, after
regenerating treatments, for each focal unit 7, if the closest friend of ¢ is among the auxiliary units,

2The method proposed by Athey et al. [2018] is more general. Here, we focus on a special case: testing the
existence of cross-unit interference in Bernoulli experiments.



Algorithm 2 Testing for interference effect (two experiments).
Input: Datasets Dl = (len,la Xl:nv Yi:n,lv Hl:n,l)v DQ - (len,Qa X1:7L7 Yl:n,Qv Hl:n,?)v exposure
function h, test statistic 7.

1. Let Zye = {i : Wi1 = W, 2} be the set of units whose treatment didn’t change over the
experiments. Randomly sample a subset of Z, of size n/2. We call the subset Zg,.. Let
Taux = [TL] \Ifoc-

2. Take the difference of Yf,c 2 and Yo 1: let Yfgicff = Yioc,2 — Yioc,1- Compute a test statistic
7O = T (Wioe1:25 Xtocs Yfgicﬁ, Hioc1:2) that captures the importance of H in predicting y diff,

3. Forb=1,...B:

Randomly permute treatments for the auxiliary units of the data: W‘?Q =W (i),1:2

i, o
for i € ZLyux, for some permutation o® of Toux-
Recompute the candidate exposure for the focal units: H Z.(f;) = hi(Wioe\ {i} k> Wéﬁlk
i € Ttoe and k € {1,2}.
Recompute the test statistic: TO) = T (Wioe1:25 Xtocs Yfgicff, ﬁf(:2,1;2)~
End For

) for

Output: The p-value

B
().

then H; is marginally a Bern(m) random variable, independent of Y;; and hence the distribution of

T (Wroes Xtoc, YfOC,Hf(fg) will not concentrate around |6|. In this case, the p-value is far from the
Unif|[0, 1] distribution.

In practice, experimenters can use any test statistic 7" that are suitable for specific applications. For
example, if the covariate X is of high dimension, a lasso-type algorithm can be used. One can also
run more complicated machine learning algorithms, e.g., random forest and gradient boosting, with
Y as a response and X, W, H as predictors, and set the statistic 7" to be any feature importance
statistic of H. Just like the choice of candidate exposure h, the choice of test statistic T° will not
hurt the validity of the test, but will largely influence the power of the test.

Then a natural question to ask is whether we can make use of information from multiple experiments
to further increase the power of the test. Suppose that we collect data from two experiments on
the same n units indexed by ¢ = 1,...,n. In order to increase the power of the previous testing
procedure, a natural idea is to reduce the variance in the test statistic computed in Algorithm 1.
To do so, instead of focusing on Y; o itself, we focus on Y;o — Y; 1. This difference is helpful in
removing variance of Y;’s that is shared by Y; 1 and Y; 2 but cannot be explained by the treatment
and covariates. If a unit has some hidden individual characteristics, those characteristics could
influence both Y;; and Y; 2 in a similar fashion but may not be well captured by the observed
covariates. To make this intuition precise, we present Algorithm 2, which makes uses of information
from two experiments and tests for the existence of interference effect. We have also included an
illustration of the algorithm in Figure 2.

Algorithm 2 has a few key differences from Algorithm 1. First, the choices of focal units are
different. In Algorithm 1, the choice of the focal units cannot depend on the treatment assignments
Wi1.n, whereas in Algorithm 2, the focal units are randomly chosen from those whose treatment
didn’t change. This specific choice guarantees that the treatment of the i unit will not influence
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Figure 2: An illustration of Algorithm 2. After selecting the set of focal units and auxiliary units,
we randomly permute rows of the treatment matrix and compute test statistics and p-values based
on the permuted data.

the difference of Y; 2 and Y; 1 much. Second, as mentioned above, in computing the test statistics,
Y4 i used instead of Y itself. As explained above, this helps reduce variance. Third, instead of
regenerating treatment, Algorithm 2 permutes the treatment of the auxiliary units. This change is
necessary to guarantee the procedure’s validity; the choice of focal units depends on the treatment
vector, and thus naively regenerating treatments will not give a valid procedure anymore. This will
be demonstrated in Section 4.

3.2 Testing with a time fixed effect model

In the previous section, we allow the existence of “arbitrary time effect”. In particular, Hypothesis 1
allows the outcome Y; j, to depend on the treatments in other experiments, and does not restrict the
relationship among outcomes in different experiments. This brings flexibility and generality, but it
could reduce the power of the testing procedures. In this section, we make additional assumptions
on the structure of time effect and propose a different testing procedure.

Assumption 1 (No temporal interference). Y; (Wi 1:x) = Yik(W1:n,1:x) if Wik = Wien k-

Assumption 1 states that the outcomes in experiment k depends only on treatments assigned in
experiment k. In other words, the effect of treatment in one experiment will not carry over to
the other experiments. Under Assumption 1, we can simplify the notation of potential outcomes:
for any wi., € {0,1}", we write Y; ;(w1.,) as the potential outcome and assume that the observed
outcomes satisfy Y; = Y; (Wi, k). Note the difference from the previous notation. Previously,
we wrote the potential outcomes Y; j(w1i.p,1:x) for any wi.n 1.5 € {0, 1}"XK. Here we focus on the
potential outcomes Y; j(w1.,) for any wi.,, € {0,1}". Following this new notation, we make an
additional assumption.



Assumption 2 (Time fixed effect). For any wi., € {0,1}", ¢ € {1,...,n} and k € {1,...,K},
Y k(wim) = ai(win) + up + € g(wim). The random variables € 1(wi:p),. .., € x(wi:n) are zero
mean, and are independently and identically distributed, independently of functions «j.,, variables
u1.k, treatments Wi., 1.k, covariates Xi., and other errors €;; for j # 1.

Assumption 2 assumes a time fixed effect model. The term wuj captures the time effect: some
special events may happen when the k' experiment is implemented, and Assumption 2 assumes
that the effect of such events is shared by all units in the experiments. The term «;(w) captures
the individual effect, which could depend on the treatment of unit ¢ as well as treatments of other
units. Finally, the terms ¢; (w1.n)’s are errors that are i.i.d. across experiments.

We also note that the commonly used no temporal effect assumption is a special case (stronger
version) of Assumption 2. The no temporal effect assumption assumes that Y; i (w1.n) = o4 (wi.,) +
€ k(Wim), where the errors €; ;(wi.n)’s are zero mean and i.i.d. across experiments. This corre-
sponds to Assumption 2 with all time fixed effects ur = 0. The no temporal effect assumption
is particularly plausible when all the experiments are implemented within a short period of time,
where the distribution of Y; j(wi.,) is not expected to change by much.

Assumption 1 and Hypothesis 1 together state that the outcome Y; ;, depend only on the treatment
of unit ¢ in experiment k. Therefore, under Assumption 1 and Hypothesis 1, we can further
simplify the notation of potential outcomes: for any w € {0,1} we write Y; ;(w) as the potential
outcome and assume that the observed outcomes satisfy Y; , = sz(Wzk)?’ With this new notation,
Assumption 2, together with Assumption 1 and Hypothesis 1, becomes a new hypothesis:

Hypothesis 1°. For any w € {0,1},i € {1,...,n} and k € {1,..., K},
Yigp(w) = o (w) +ug + €5 (w), (6)

such that the vectors €. 1(w),. .., €1.n Kk (w) are independently and identically distributed, inde-
pendently of functions aq.,, vector ui.x, treatments Wi., 1.5, covariates Xi., and other errors
€j1(w) for I # k.

This corresponds to the two-way ANOVA in statistics literature [Yates, 1934, Fujikoshi, 1993] and
the two-way fixed effect model in economics literature [Bertrand et al., 2004, Angrist and Pischke,
2009].

In the previous section, we conduct some permutation tests that permute the data “vertically”, i.e.,
permute different units. Here with the additional assumptions, we can conduct permutation tests
that permute the data “horizontally”, i.e., permute different time points or experiments.

To motivate the permutation test, consider two units ¢ and j. Assume that i has been in the treat-
ment group the whole time, while j has been in the control group the whole time. Under Hypothe-
sis 17, we have for the first experiment, Y; 1 —Yj1 = (oi(1) + u1 + €,1(1)) — (a;(0) + w1 + €5,1(0)) =
a;(1) — ;(0) +€;,1(1) —€;,1(0), and for the second experiment, Y; o — Y2 = (a;(1) + uz + €2(1)) —
(Oéj(O) + ur + 6j71(0)) = Oéi(l) — Oéj(O) + 6@2(1) — 6j72(0). Thus,

Yii — Yig = ai(1) — j(0) + €1 (1) — €,1(0) £ ay(1) — j(0) + €2(1) — €2(0) = Yio — Yjo. (7)

3Note again the difference with the previous notation. Here we focus on the potential outcomes Y (w) for
any w € {0,1}, while we consider wi.n,1:x € {0,1}"XK for the most general case and wi., € {0,1}" assuming
Assumption 1.



Algorithm 3 Testing for interference effect (two experiments, time fixed effect model).
Input: Datasets Dl = (len,la Xl:nv Yi:n,lv Hl:n,l)v DQ = (len,Qa X1:7L7 Yl:n,Qv Hl:n,?)v matChing
algorithm m, test statistic T

1. LetIo—{z 11—Wz2—0}and21—{z 11—1%72:1}.

2. For each ¢ in Z;, match an index j € Zy to ¢ (with no repeat): let m(i) be the matched index
of i. Let Z,,, = {m(i) : i € Z1} be the set of matched indices.*

3. For each k € {1,2}, compute Yﬂiﬁ = (sz — Y, k) :c7,» Which is the vector of differences
between the outcomes of the treated units and those of1 the matched units.
Compute a test statistic 7(©) = T(Yﬁiﬁzg,XIm,HIm,Lz,XL,H11,1;2)-

4. Forb=1,...B:

For each 7 € 7;:

Randomly permute outcomes across experiments: }Z.EZ) =VYio,, k) and

~ b '
Yri()i)7k = Ym(i),oiyb(k) for some permutation oy of {1,2}.
End For ~
Recompute YId lf,fc( ) — (Yi(z) —
Recompute the test statistic: T'¢
End For

)k )2611

(YId;fi(Q)?XZrm Hrz,, 1.2, X7, HT, 1:2).

Vak

Yt
) =

Output: The p-value

B
p:BlH <1+ZJL{T(O) §T<b)}>. 9)

To put it simply, under Hypothesis 1°, Y; 1 — Y} 1 has the same distribution as Y; 2 — Y} 2. However,
when there is cross-unit interference, the two distributions could be different. Consider a simple
model:

Yie = WirHik + €1, (8)

where H; j is the fraction of neighbors of unit ¢ treated in experiment k, and ¢; ;’s are some i.i.d.
zero mean errors. Under this model, Y;1 —Yj1 = H;1+¢€,1—¢€;1 and Yo —Yjo = H; 9+ €2 —€j0.
When the number of neighbors of unit ¢ is large, by law of large numbers, we have H; ; ~ m and
H; 3 =~ m. We can then observe that Y;; — Y1 and Y;2 — Y;2 have different distributions; in
particular, they have different means.

Given the above observation, we can conduct a permutation test permuting pairs of (i, j) across ex-
periments. We outline the algorithm in Algorithm 3. We also provide an illustration of Algorithm 3
in Figure 3.

In Algorithm 3, we compare the value of a test statistic to the value of the statistic after permutation.
One simple choice of test statistic is the difference-in-differences statistic:

T(Yﬂiﬁzz, Xz,.. Hz,, 102, X7,, HT, 1:2) = mean(Yle) mean(Yd‘ﬁ) , (10)

where 7; and Z,, are defined in the first step of Algorithm 3. We use the simple model (8) discussed
above to explain why this choice of statistic is reasonable. Under model (8), the difference-in-
differences statistic (without absolute value) will be

mean(Ydlﬂ) mean(Ydlﬁ) ~ mean(Hz, o) — mean(Hz, 1) =~ my — 7. (11)

“Here we assume that |Z1| < |Zo|. If [Z1]| > |Zo|, we start with Z; instead.
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Figure 3: An illustration of Algorithm 3. Algorithm 3 permutes the outcomes horizontally (across
experiments), whereas Algorithm 2 permutes the treatments vertically (across units).

However, after permutation, the difference-in-differences statistic (without absolute value) will be
mean zero. Therefore, T(© and T® will have different distributions and thus the p-value will be
far from the Unif[0, 1] distribution.

One advantage of this difference-in-differences test statistic is its simplicity. To compute this statis-
tic, there is no need of constructing a candidate exposure or any interference graph, and thus the
computation cost of the test statistic is very low. This test statistic is also very intuitive to under-
stand. Recall the motivating example in Section 1.1: when the difference-in-means estimators are
different, the difference-in-differences test statistic is large. With this test statistic, our algorithm
formalizes the intuition of the motivating example in Section 1.1.

The difference-in-differences statistic is not the only one we can choose. Indeed, just as for Al-
gorithms 1 and 2, we have full flexibility in choosing the test statistic. For example, we can add
covariate adjustment into the test statistics: instead of taking the difference of mean(YZdlig) and
mean(Yﬁiﬁ), we can take the difference of the fitted intercepts after regressing Y1 (and Y5iff) on
Xz, and X7,. We can also bring the candidate exposure H into the picture. For example, we can
similarly define Hgfk = (H; 1, — Hm(i)vk)iel'l for k € {1,2}. Then one plausible test statistic (when
H; ) € R) is the following:

diff diff diff diff diff
T(YI11,1:27 XIm’ HIm:]-:27 XIl7 HI1,152) = ’COH‘ [YLI,Q - 211,17 HI;,2 - Zi,l] ‘ . (12)

Finally, we want to comment on the matching algorithm m used in Algorithm 3. We would first like
to stress that as long as the matching algorithm only looks at the covariates X, the test will be valid
regardless of the quality of matching. In the most extreme case, we can simply conduct a random
matching, and the test will remain valid. More ideally, we would hope each i is matched to an m(z)
such that X; is close to X,,(;). This matching step helps reduce variance due to the covariates and
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thus increase the power of the test. In the causal inference literature, matching algorithms have
been widely studied [Rubin, 1973, Stuart, 2010, and we recommend that experimenters choose
from existing algorithms based on their needs and the computational resources available.

3.3 Usage of graphs of experimental units

In implementing the previously proposed algorithms, we often find it helpful to construct a graph of
the n experimental units. Formally, let G = (V, E), with vertex set V = {1,2,...,n} and edge set
E = {E;; }ijl. We will discuss a few different ways of using graphs to test and learn interference
structure.

Interference graph. A graph can be constructed to model interference and to help compute
candidate exposure. We call such a graph an interference graph. When experimental units are
users, it is plausible to assume that a user’s behavior is mostly influenced by friends in a social
network. In this case, we can simply take the interference graph to be the social network, i.e., we
set F;; = 1 if user 7 and j are friends on the social network. With this graph, many candidate
exposures can be computed easily: number of treated friends H;szrds = Zj: Eij—1 Wi i, fraction
of friends that are treated Hl.ff,jCFrdS =2 By=1 Wik /{7 : Eij = 1}|, number of treated two-hop

HZEmQFrdS = Zl:ﬂj s.t.Eij By=1 Wi . The interference graph can be constructed differently

in other settings. When experimental units are advertisers, there is no natural social network.
However, we can construct a “competition network” based on the similarity of the covariates.
For a similarity measure s and a threshold €, we can define E;; = 1{s(X;, X;) >€}. Such a
graph reflects that an advertiser is mostly influenced by its competitors, especially those that are
similar to it. Candidate exposures can then be computed based on this interference graph: number

of treated competitors H,' ;met = > Fy;=1 Wik, weighted average of competitors’ treatments:

AvgCpt
HzV’Vk verp = Z]Ewil S(X“XZ)ijk

friends

The interference graph also helps experimenters to understand the nature of interference. Imagine
we have two different interference graphs G; and Go and we apply the testing procedure separately
using G1 and Gs. If we observe a much smaller p-value for the procedure using GGy than that we
obtain using G, then we have some evidence suggesting that the interference in the form of G is
much stronger than in that of G5. In particular, the units that are connected to unit ¢ in G might
be the most influential in impacting the outcome of unit 7. This kind of analysis, though not fully
rigorous, can help experimenters to build better intuitions for modelling in subsequent analysis.
For example, once the interference effect is statistically significant, experimenters may consider
re-running experiments with a cluster randomized controlled trial. Understanding the structure of
interference can be helpful in constructing better clusters.

Graph in matching. A graph can also be helpful in the matching step in Algorithm 3. In
the causal inference literature, matched pairs are often constructed using a minimum cost flow
algorithm on a bipartite graph with treated units on one side and control units on the other side
[Rosenbaum, 1989, Hansen and Klopfer, 2006]. Here, the cost of flow from unit ¢ to j can be
defined as some dissimilarity metric between X; and X;. For example, the Mahalanobis distance is
a common choice of such a dissimilarity metric [Rubin, 1980]. The bipartite graph may not always
be a complete bipartite graph: sometimes a caliper can be applied to the graph resulting in the
removal of edges. A caliper based on covariates limits with which a unit can be paired [Mahmood,
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2018].°> For example, researchers may only want advertisers to be matched/paired with advertisers
who sell products of the same category; in such cases, there is an edge between ¢ and j only if they
sell products of the same category.

Interestingly, calipered graphs may correspond to the interference graph introduced in the above
section, and thus we only need to construct the graph once and use it in both the step of computing
candidate exposure and the step of matching. This is especially relevant in a market competition
application: a company is expected to be mostly influenced by companies selling similar products,
and thus we put edges in the interference graph; in the meantime, we would like to match companies
selling similar products, and thus we put edges in the bipartite graph used in matching.

3.4 Aggregating p-values

One issue with the algorithms above proposed is that randomly splitting the data (Algorithms 1
and 2) or the random matching step (Algorithm 3) can inject randomness into the p-value. In order
to derandomize the procedure, we can run the algorithms many times and aggregate the p-values.
Since the p-values can be arbitrarily dependent on each other, we cannot use Fisher’s method to
aggregate the p-values, which requires independence [Fisher, 1925]. Some possible ways include,
e.g., setting p = 2> p;/n (See Vovk and Wang [2020] for more details).

In the previous section, we discuss the usage of an interference graph in constructing candidate ex-
posure. In practice, experimenters may construct several interference graphs with different sparsity
or structure. We can make use of information from different graphs and construct an “aggregated
p-value”. We can run the algorithms separately for each graph, and compute an “aggregated test
statistic”. For example, we can choose 7% = 3" T(G,,), where Gy, is the m' interference
graph considered. Then we can compute an aggregated p-value in the following way:

B
1
aggre __ 1 1 {Taggre < Taggre(b)} ) 1
P B+1 ( M mzzl = (13)

3.5 Extension to three or more experiments

More generally, experiments may be conducted more than two times. Formally, suppose that we
run K experiments where treatments are randomly assigned according to (1) and (2). To test for
interference, we can adopt a similar strategy as in Section 3.1. We outline the general algorithm in
Algorithm 4. We note that Algorithm 2 is a special case of Algorithm 4. In practice, we recommend
computing the test statistic using the difference of outcomes between experiments (as emphasized
in Algorithm 2), since this helps remove common variance shared by outcomes in the experiments.
One example of such statistic is the following.

T(Wfoc,lzKa Xf0C7 YVfoc,l:Ka Hfoc,l:K) = Z ‘COH' [vaoc,k - vaoc,la Hfoc,l - Hfoc,l” . (14)
(k,l):k#l

If we assume a time fixed effect model as in Section 3.2, we can then extend Algorithm 3 to settings
with more experiments. We outline the algorithm in Algorithm 5. Again, we note that Algorithm
3 is a special case of Algorithm 5. Algorithm 5 allows permutation over more experiments than

°In the observational study literature, calipers are often applied on the propensity score [Cochran and Rubin,
1973, Rosenbaum and Rubin, 1985]. Here we are in an experimental setting instead, where the propensity score is
known, and it is the same for all units.
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Algorithm 4 Testing for interference effect (multiple experiments).

Input: Datasets Dy, = (Wi k, X1:n, Yim ks Him i) for k=1,..., K, exposure function h, test
statistic 7.

1. Let Zye = {i: Wi1 = --- = W i} be the set of units whose treatment didn’t change over the
experiments. Randomly sample a subset of Z, of size n/2. We call the subset Zg,.. Let
Taux = [TL] \Ifoc-

2. Compute a test statistic 70 = T (Woe,1:1 > Xtocs Yioe,1:K s Hfoc,1:1¢) that captures the
importance of H in predicting Y.

3. Forb=1,...B:

Randomly permute treatments for the auxiliary units of the data: WZ(? k=W ®) (i), 1:K

for i € ZLyux, for some permutation o® of Toux-

Recompute the candidate exposure for the focal units: H Z.(f;) = hi(Wioe\ {i} k> ng{k),
for i € Zgo. and k € {1,2,..., K}.

Recompute the test statistic: TO) = T (Wioe:K 5 Xtocs Yeoe,1:K » I}f(:le)

End For
) | (15)
b=1

Algorithm 3 does. In particular, if unit 7 is treated in experiments K, K; + 1,..., K, then the
algorithm permutes outcome for unit ¢ and its matched unit over experiments K1, K1 +1,..., K.
Permuting over more experiments helps the test to leverage information from more experiments and
thus increases power of the test. We have included an illustration of this algorithm in Figure 4.

Output: The p-value

3
I
:
+ =
—
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=
—
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4 Validity of the testing procedures

In this section, we establish validity of the above proposed algorithms. We make use of the following
theorem in Hemerik and Goeman [2018a,b, Theorem 2].

Theorem 1 (Random permutations). Let Aj, As,..., A, € A be n random variables. Let S,
denote the set of all permutations on [n]. Assume that

1. G C S, is a subgroup;

2. Foranyo € G, A= (A1,...,An) L (Ap1ys -+ Ag(m) = Ao

If o1,...,0p are drawn independently uniformly from G, then for any test statistic T, the p-value

B
p= g (1 PRIUCE T(Ac,)}) (17)
satisfies

Plp<a<a (15)

for any o € (0,1).

SHere we assume that |[Zo| > n/2.
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Algorithm 5 Testing for interference effect (multiple experiments, time fixed effect model).
Input: Datasets Dy, = (Wi k, X1:n, Yiin ks Him ) for E =1,..., K, matching algorithm m, test
statistic T'.

1. Let Zy = {i : Wj1 = --- = W, = 0} be the set of units that are in the control group in all
experiments. Let Il = {z i k—1 = Wi ik = 1} be the set of units that are in the treatment
group in the last two experiments (i.e. units that are treated in at least two experiments).

2. For each ¢ in Z;, match an index j € Zy to ¢ (with no repeat) let m(i) be the matched index
of i. Let T, = {m(i) : i € Z1} be the set of matched indices.®

3. For each k € {1,..., K}, compute Yd‘f,ff = (Yip — Ym(i)’k)iezl’ which is the vector of
differences between the outcomes of the units in Top and those of the matched units.
Compute a test statistic 7 = (Y‘h% > X1, Hz, 1.5, X7, HT, 1:K)-

4. Forb=1,...B:

For each 7 € Z;:
Let S; = {k : W, = 1} be the set of experiments in which unit i is treated.
Randomly permute outcomes across S;: ZEZ) =Yio, (k) and ?n(zb()i)’k = Ym(i),0:5(k)
for all k € S;, where 05, is a random permutation of S;.

End For

o-diff, (b (b (b
Recompute Yzl,k( ) = (Y;(k) - Yé()i),k%efl
Recompute the test statistic: T = T(YIdlfi(Ig,XIm,HIm’l Ky X1, HT, 1:K)-

End For
Output: The p-value

B
p= e <1+Z]I{T(O) < Tb)}> (16)

b=1

"
|
: Matched
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—— Control — :
| |
| |
| |
| |
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| 1
Units 1 |
| 1
| 1
| 1
1 1
1 1
1 1
1 1
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1
1
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Figure 4: An illustration of Algorithm 5. Pairs of units are matched and the outcomes of paired
units are permuted together across experiments. Test statistics and the p-value are then obtained
based on the permuted data.



We start with establishing the validity of Algorithms 1, 2 and 4 under general assumptions.

Theorem 2. Assume that the treatments are assigned according to rules defined in (1) and (2).
Under Hypothesis 1, the p-values produced by Algorithms 1, 2 and 4 are valid in the following sense:
for any o € (0,1),

Plp<al<a. (19)

Proof. Algorithm 1 has been shown to provide valid p-values in Athey et al. [2018]. Since Al-
gorithm 2 is a special case of Algorithm 4, it suffices to prove that the p-values produced by
Algorithm 4 are valid. We will be making use of Theorem 1 to show the result.

We start by noting that since Hic 1.5 is a function of Wi 1.x and Waux 1.k, the test statistic
T(Wfoc,1:K7 Xioc, vaoc,l:Ku Hfoc,l:K) can be rewritten as

T(Wfoc,l:K7 Xfom vaoc,l:K7 Hfoc,l:K) = T<Wfoc,1:K7 Xfom vaoc,l:lﬁ Waux,l:K) (20)

for some function 7. Thus, we can also rewrite

(b . b
T(Wfoc,lzKa Xfoca vaoc,l:Kv Hf(oz’l;K) = T(Wqul:Ka Xf007 vaoc,l:Ka W;uL,I:K)‘ (21)

By construction, ng{ 1.;¢ s a random permutation of the rows of Waux 1.x. Thus, we can take

the permutation group G to be the set of all permutation on Z,,x. By Theorem 1, it suffices to
establish that

d
Wa(aux),lzK | Wfoc,l:K, Xfoca vaoc,l:Ka Ifoc = Waux,l:K ’ Wfoc,l:Ka Xfoca YVfoc,l:Ka Ifoca (22)
for any permutation o(aux) on Zy,x. The above is equivalent to

(Wa(aux),lzK’ Wfoc,l:K; Xfoc, YVfoc,l:Ka 1 {Ifoc = Iﬁx}) (23)
d
- (Waux,1:K7 Wfoc,l:Ka Xf0(37 vaoc,l:Ka 1 {Ifoc = Iﬁx}) 5

for any fixed subset Zg, C [n] of size n/2. Let Zgye = [n] \ Zgoe. Then, under the null hypothesis 1,

b (Waux,lzKa Wfoc,l:K7 Xtocs vaoc,l:Ka 1 {Zfoc = Iﬁx})
= p (Wixe 1:50 Wi, 1.5 Xiix, Yiix 1:56 1 {Zioc = Zsix}) (24)
= p(Wixe 1.50)P(Wiix, 1:1¢» Xixes Yo, 1:6)P [Zoe = Zix | Whise 1.5, Whix,1: | »

where the last line follows from the no cross-unit interference hypothesis and the fact that treatments
are sampled independently across units. Note also that permuting Zg.c will not change the selection
probability of the focal units, i.e., P [Zte = Zax | Wixe, Wax] = P [Zioe = Zaix | Wosixe), Wax], and
thus

P(Whse 1:5)P(Whix, 155 Xeix, Yiix,1:6)P [Zioe = Lhix | Wixe 1:50, Wi, 1:k |
= p(Wa(ﬁxg),lzK)p(Wﬁx,lzKa Xfixs Yﬁx,l:K)]P) [Ifoc = Thix ’ Wa(ﬁxc),lzKa Wﬁx,l:K]

(25)
=P (Wa(ﬁxc),l:K> Wﬁx,l:K7 Xfixs Yﬁx,l:K; 1 {Zfoc = Iﬁx})
=p (Wa(aux),11K7 WfOC,ltKa Xtocs iffoc,lzKa 1 {Ifoc = Iﬁx}) )
and thus proving (23). O
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Theorem 3 (Time fixed effect model). Assume that the treatments are assigned according to
rules defined in (1) and (2). Under Assumptions 1- 2 and Hypothesis 1, the p-values produced by
Algorithms 3 and 5 are valid in the following sense: for any a € (0,1),

Plp<al <a. (26)

Proof. Algorithm 3 is a special case of Algorithm 5, and thus we will only work with Algorithm 5
here. We will again make use of Theorem 1 to show the result.

By construction, the elements in EN/Idl iﬁ’:gg) are a random permutation of the elements in YIdlif{: x- The

allowed permutations in Algorithm 5 clearly form a group. Specifically, the allowed permutations
are defined by o = (0;);e7,, where each o; is a permutation of S; = {k : W, = 1}, and o(Y4if) =
Y;d;f_f( k- Following this notation, by Theorem 1, it suffices to show that for any allowed permutation
0-7

. d .
U(Yl('jllg;}() | Winak, Xim, Im = 1('111%;}( | Wik, X1, . (27)

Under Assumptions 1 - 2 and Hypothesis 1, following (6), we can write Y; 5 (w) = a;(w)+up+¢€; x(w).
Therefore, for any i € Z; and k € S;, we have that Y, = Yjr(1) = a4(1) + up + € 1(1). At the
same time, for the matched unit of i, we have Wy, = 0, and thus Y, i = Y4 x(0) =
(i) (0) + Uk + €p(3),1(0). The difference of the two satisfies

VA =Y = Yoy = (1) 4w + €5(1) = (Quni) (0) + up + iy 4(0)) (28)
= ai(1) + € 1(1) = Q) (0) + €4, (0)-

Under Assumption 2, we have that

(az(l) + Ei,k(l) — Q) (0) + 6m(z),k(0)) | WI:n,l:Ka X1y Lins Q1:n (29)
d
= (ai(l) + ei,ai(kz)(l) - am(z)(o) + €m(i),04 (k) (O)) | Wl:n,l:K; X1, L, 01:n

for any permutation o; of S;, because the errors €;; and €;4,) are ii.d conditioning on
Wik, X1 and ai,, (and same for €m(i),k and 6m(i),ai(k))' In addition, since all the errors

€;x's are independent conditioning on Wiy, 1.k, X1.n and aq.,, we have that

(051(1) + ei,k(l) = Q) (0) + Em(i)’k(o))iell ’ Wl:n,l:K7 X1y Lins Q1n

30)
d (
= (Oéi(l) + Ei,ai(k)(l) = Qi) (O) + Em(i)gi(k) (0))1'611 | Wl:n,l:Ka Xl:naIma Olin-
Rewriting the above, we get
i d i

YIdl,f{:Ka QL | Winak, Xim, Im = O-(dehf{;[() | Wina:k, X1y I, Qin, (31)

which further implies (27) and hence gives the desired result.
O

5 Simulations

In this section, we focus on a form of network interference. Specifically, we use a real-life social
network to describe social interactions among units. We generate outcomes with some magnitude of
network interference and evaluate our methods based on these generated outcomes. Our simulations
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can be viewed as semi-synthetic experiments—we use a real-life network, but we generate outcomes
according to some model.

We consider the Swarthmore network in the Facebook 100 dataset [Traud et al., 2012]. All networks
in this dataset are complete online friendship networks for one hundred colleges and universities
collected from a single-day snapshot of Facebook in September 2005. Here we focus on the Swarth-
more college network in our simulation. To make the social network connected, we extract the
largest connected component of the Swarthmore network. To summarize, the network we use is of
size 1657 with 61049 edges. The diameter of the network is 6 and the average pairwise distance is
2.32.

Throughout this section, we assume that we have access to the data of three randomized exper-
iments. We take treatment probabilities w1 = 10%, m = 25% and 73 = 50%. In the following
simulation studies, we consider level of significance a = 0.05. Every dot on each plot is an average
over 500 replications. We take B = 200.

5.1 Under general assumptions

We compare the power of the tests given in Algorithms 1, 2 and 4. We run Algorithm 4 using
all three experiments, run Algorithm 2 using the second and the third experiments, and run Al-
gorithm 1 using the third experiment, i.e., we always use experiments with the largest treatment
probabilities. We discuss the choice of test statistics in Appendix A. In Figure 5a, we assume a
linear model of the outcome Y; in Figure 5b, we assume a nonlinear model. The details of the
generating model can also be found in Appendix A.

In Figures 5a and 5b, we plot the power of the testing algorithms 1, 2 and 4 at different levels of
interference effects (signal strengths). In the figures, the fraction of common variance controls the
correlation of the individual outcomes across experiments.

We observe from Figures ba and 5b that utilizing more experiments helps our algorithms become
more powerful, especially when the fraction of common variance is high. As discussed in Section
1.2, our work is the first to consider testing interference with multiple randomized experiments.
Therefore, we can treat the algorithm utilizing one experiment as the baseline method that repre-
sents the state-of-the-art. Our algorithms appear to have a clear advantage over the baseline in
terms of the power.

We also find that the regression statistic performs better than the correlation statistic, because the
regression step helps reduce variance caused by the observed covariates.

5.2 Time fixed effect model

We compare the power of the tests given in Algorithms 4 and 5. We run both algorithms using all
three experiments. We use a regression test statistic in both algorithms. We discuss the choice of
test statistics and matching algorithms in Appendix A. In Figure 6a, we assume a linear model of
the outcome Y, whereas in Figure 6b, we assume a nonlinear model. The details of the generating
model can also be found in Appendix A.

In Figures 6a and 6b, we plot the power of the testing algorithms 4 and 5 at different levels
of interference effects (signal strengths). Algorithm 5 (testing with a time fixed effect model)
appears more powerful than Algorithm 4 (testing under general assumptions). To understand this
phenomenon, we recall that Algorithm 4 permutes data across experiments, whereas Algorithm 5
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Figure 5: Power of Algorithms 1, 2 and 4.
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permutes data across units. Due to the nature of A/B tests, there is more variability in treatment
allocation across experiments than across units. For example, assume that all units have around
Nngh Neighbors in the social network. Looking at the fraction of neighbors in the treatment group,
we find that the variation of this quantity across units is of scale 1/ \/Tingb, Whereas the variation of
this quantity across experiments is of constant scale. By permuting over data points that are more
different, Algorithm 5 gains extra power.

Recall that there is a matching step in Algorithm 5. We find from Figure 6a and 6b that covariate-
based matching outperforms random matching, especially under a nonlinear outcome model. In a
linear model, the regression step has already removed almost all of the variance caused by observed
covariates. In a nonlinear model, nevertheless, the regression step cannot fully remove all variance
and the matching step can help further reduce variance.

6 Applications

In this section, we illustrate how the proposed procedure has been successfully implemented at
LinkedIn as an add-on to their experimentation toolkit. Like other firms in the technology sector
such as Google and Meta, LinkedIn makes business decisions in a data-driven manner and has a cul-
ture to “test everything”. To support the needs to run concurrent A /B tests at scale, LinkedIn built
an in-house experimentation platform, called T-REX (Targeting, Ramping, and Experimentation),
which provides end-to-end experimentation supports [Xu et al., 2015, Ivaniuk, 2020]. Regardless of
the application, T-REX implements simple Bernoulli randomization and relies on t-test for readout
without taking into account potential interactions among experimental units.

This becomes a major limitation for experimentation in a marketplace environment, including
the ads marketplace, where units on either side of the marketplace (advertisers and ad viewers)
can interfere with each other [Basse et al., 2016, Pouget-Abadie et al., 2019a, Liu et al., 2021,
Johari et al., 2022]. For example, ad campaigns that share the targeting audiences interfere with
each other by competing in auctions for ad slots; different ad viewers with similar attributes are
connected through the finite budget of certain ad campaigns. To remove bias in experiments
caused by interference, LinkedIn has implemented the Budget-split platform on top of T-REX for
experimentation in their ads marketplace [Liu et al., 2021].

However, since Budget-split uses two halves of the marketplace to simulate the counterfactuals
under different treatment variants, it does not support the classic factorial design. Under the
current implementation, the platform only runs one experiment at a time, which is much smaller
than the total number of experiments they need to run. This limitation in Budget-split capacity
severely delays innovation: teams need to wait for weeks for a Budget-split slot in order to get an
accurate measurement of their feature ramp before product launch. Nevertheless, not all ramps
suffer from unit interaction, even in the ads marketplace setting. Running Budget-split experiments
with negligible interference incurs a huge opportunity cost. Ideally, the Budget-split platform wants
to prioritize tests that are impacted the most by the interference effects.

At LinkedlIn, all feature launches start with small percentage ramps for risk mitigation and grad-
ually increase the treatment percentage (i.e., 1%, 5%, 10%, 25%) before reaching the iteration
for treatment effect measurement (50%) [Xu et al., 2018, Mao and Bojinov, 2021]. Specifically,
Budget-split amounts to a 50% ramp on the viewers’ side. This increasing allocation scheme pro-
vides us information to detect potential interference. With the algorithms proposed in this paper,
we implemented a screening step for each feature after the 25% iteration. The experiments are
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Metric 1: p-value = 0.002 Metric 2: p-value = 0.027
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Figure 7. Example experiment: Test statistics and p-values from the permutation test. Results on
two metrics are shown.

then ranked by the p-value in the interference test to determine their priority on the Budget-split
platform.

It is important to note that the screening module was designed as an add-on to the system without
touching LinkedIn’s existing experimentation solution such as T-REX. By default, the interfer-
ence detector only requires experimentation data in two previous iterations and runs Algorithm 3.
Users have the option to provide additional network information that characterizes the potential
interference mechanism among units and run other algorithms in this paper. Because of this stan-
dalone nature, a similar interference detector can be readily added to any existing experimentation
platforms to trigger alerts when interference might cause a problem.

As an illustration, we consider an online controlled experiment implemented by LinkedIn. The
treatment in this experiment corresponds to a new feature that improves the quality of LinkedIn
members’ attribute for ads targeting. We run a series of experiments with increasing allocation
with the members as the randomization units. Interference effect is expected in these experiments:
when the allocation percentage is small, only a small set of members have the updated attributes,
making them easier to be targeted by ad campaigns. Thus, when comparing metrics such as total
ad impressions, these members tend to have larger average results than members in the control
group. When the treatment allocation increases, more members get the improved attributes. Since
the total ad budget does not increase much, the average difference between treatment and control
units becomes smaller. Figure 1 shows the average differences between treatment and control units
in the experiment series. Figure 7 shows the output from the interference detector after running
Algorithm 3 based on the 10% and 25% iterations with respect to two different metrics. The
p-values of the permutation test confirm the strong interference effects in these experiments.
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7 Discussion

Missingness. In this paper, we make the assumption that the dataset is complete. A natural fu-
ture direction of work is to extend the current methods to scenarios with missing data. It is not hard
to show that if the data is missing completely at random (MCAR), then the proposed testing proce-
dures are still valid. When MCAR is unrealistic, it will be interesting to study whether our methods
can still be applied under certain conditions. In practice, experimenters need to carefully examine
the possible causes and consequences of missingness and make decisions correspondingly.

Selective inference. We propose to use our testing procedure as a screening step for A /B testing:
if the test suggests that no interference exists, then the experimenter can proceed with classical
causal inference analysis. Strictly speaking, the data is used twice here—in the screening step and
in the follow-up analysis. It would be of interest to understand the impact of the screening step on
the follow-up analysis, and to develop valid statistical inference methods conditioning on the result
of the screening step.

Sequential Testing. Another question left open by this paper is whether the proposed methods
can be extended to the sequential testing setting. Our current procedure fixes the number of
experiments a priori and constructs a single p-value from the permutation test. In real life, the
treatment probability increases gradually, and it would be of practical interest to end the experiment
early as soon as we detect any interference. In that scenario, we need to take into account the
randomness in stopping time and construct always valid p-values [Johari et al., 2017].
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A Simulation Details

A.1 Under general assumptions

In Section 5.1, we compare the power of the tests given in Algorithms 1, 2 and 4.

A.1.1 Test statistics

Here, we discuss the test statistics used by the algorithms. Let H;; be the fraction of treated
neighbors of unit ¢ in experiment k. Let IN; be the number of neighbors of unit ¢ in the social
network.

One experiment. For Algorithm 1, we use the following test statistic: run a linear regression
of
Yioc ~ Wioe + Xtoc + Nioe + Hioc, (32)

extract the regression coefficient of H and take the absolute value of the coefficient.

Two experiments. For Algorithm 2, we consider two different test statistics, a correlation statis-
tic and a regression statistic. For the correlation statistic, we take

T(Wioe,1:2: Xtoos Vit Hioe,1:2) = |Corr [ Vi, Hige — Hioe | (33)
For the regression statistic, we run a regression of
Yfgicff ~ Xfoc + Nfoc + Hfoc,l + (Hfoc,2 - Hfoc,l)a (34)

extract the regression coefficient of (Hgoe2 — Hfoe,1) and take the absolute value of the coefhi-
cient.

Three experiments. Let T} ; be the test statistic (regression or correlation) defined above when
only two experiments are utilized (the k-th and I-th experiments are utilized). We then simply use
T2+ T3+ T1 3 as the test statistic for Algorithm 4 with K = 3.

A.1.2 Outcome models

We consider two different outcome models. For the linear model, let H; ;. be the fraction of treated
neighbors of unit ¢ in experiment k. We assume

Y x = (signal strength)H; ;. + 2W; , + Xi1 + Xi2 + €1, (35)

where k € {1,2,3} and X;1 ~ N(0.5,1), X;2 ~ Poisson(3) independently. The errors g;’s are
such that (g51,...,&; k) is distributed as multivariate gaussian with [E [e; ;] = 0, Var [g; ;] = 1 and
Cov [e; k, €] = (fraction of common variance) for k # [.

For the non-linear model, let M;; be the number of treated neighbors of unit i in experiment k.
We assume

20
2Wig + X1+ Xi2 + €y
where k£ € {1,2,3} and X;; ~ N(0.5,1), X;2 ~ Poisson(3) independently. The errors ¢, ’s are
such that (g;1,...,&; k) is distributed as multivariate gaussian with E [¢; ;] = 0, Var [g; ;] = 1 and
Cov [e; k, €] = (fraction of common variance) for k # [.

M; .
Y; r = (signal strength = + 5ex ( min (M; g, 20 >> +
k= (sig gth) < P | g min (Mix, 20) (36)
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A.2 Time fixed effect model

In Section 5.2, we compare the power of the tests given in Algorithms 4 and 5.

A.2.1 Test statistics

Here, we discuss the test statistics used by the algorithms. Let H;; be the fraction of treated
neighbors of unit ¢ in experiment k. Let IN; be the number of neighbors of unit 7 in the social
network.

Algorithm 4. We use the regression statistic defined in Section 5.1.

Algorithm 5. For Algorithm 5, we use an “anova’ statistic. Let Z} = {ieZ;: W;; =1}
and let 7/, = {m(i):i € I|}. We start with concatenate Y3ff =~ — (Ydiff Yﬂ%,Yﬂ%). Simi-

concat i 0

larly, let Neoncat = (Nconcat,laNconcat7m)7 where Nconcat71 = (NIi,l’NIl,Q,NIlﬁ) and Nconcat,m =

(NI“, Nz, o, NL,g). We do the same concatenation for X and H. The reason we take the subset
T} of Z; in the first experiment is that we want Y.3ff ' to be a pure contrast of treatment group
and control group. Without the subsetting step, Y4 contains both treatment-control differences
and control-control differences. Let Indy be the indicator of the second experiment and Inds be the

indicator of the third experiment. We then run two regressions:
Model 1: }/;%irlffcat ~ Xconcat + Heoncat + Neoncat + Inda + Inds,
Model 2: Ydiﬁ concat 1 Nconcat-

~Y
concat

(37)

Finally, we let the test statistic be the F'-statistic from the anova testing of contrasting Model 1
with Model 2.

A.2.2 Matching algorithms

Random matching. We sample m(i) uniformly at random without replacement.
Covariate-based matching. We use optimal matching based on the Mahalanobis distance of
observed covariates and N; [Sekhon, 2008].

A.2.3 Outcome models

We consider two different outcome models. For the linear model, let H; ;. be the fraction of treated
neighbors of unit ¢ in experiment k. We assume

YVZ'J.C = (signal strength)(2Wi + 1)Hi,k’ + 2Wi,k + X@l + X74'72 + Ei ks (38)

where k € {1,2,3} and X;; ~ N(0.5,1), X;2 ~ Poisson(3) independently. The errors g, ’s are
such that (g51,...,€; k) is distributed as multivariate gaussian with E [¢; ;] = 0, Var [g; ] = 1 and
Cov [e; k, €] = (fraction of common variance) for k # [.

For the non-linear model, let M;; be the number of treated neighbors of unit ¢ in experiment k.
We assume

My, L.
Y . = (signal st th)(2W; +1 : 5 — M; i, 20
k = (signal strength)(2W; + 1) ( 50 T Oexp (50 min (M, )>) (39)

+ QW@k + Xi,lXi,Q +1 {Xi,l > 0.5, Xi’g > 3.5} + €i ks
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where k € {1,2,3} and X;; ~ N(0.5,1), X; 2 ~ Poisson(3) independently. The errors g, ’s are
such that (g51,...,&; k) is distributed as multivariate gaussian with E [¢; ;] = 0, Var [g; ] = 1 and
Cov [e; k, €] = (fraction of common variance) for k # [.
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