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Abstract

In many medical and business applications, researchers are interested in estimating
individualized treatment effects using data from a randomized experiment. For ex-
ample in medical applications, doctors learn the treatment effects from clinical trials
and in technology companies, researchers learn them from A/B testing experiments.
Although dozens of machine learning models have been proposed for this task, it is
challenging to determine which model will be best for the problem at hand because
ground-truth treatment effects are unobservable. In contrast to several recent papers
proposing methods to select one of these competing models, we propose an algorithm
for aggregating the estimates from a diverse library of models. We compare ensembling
to model selection on 43 benchmark datasets, and find that ensembling wins almost ev-
ery time. Theoretically, we prove that our ensemble model is (asymptotically) at least
as accurate as the best model under consideration, even if the number of candidate
models is allowed to grow with the sample size.

1 Introduction

The conditional average treatment effect (CATE) function τ(·) is an object of central im-
portance in precision medicine and targeted marketing [Gutierrez and Gérardy, 2017b, Kent
et al., 2018]. For any feature profile x, τ(x) gives the average effect of a treatment (relative
to control) among individuals with features x. Estimates of τ(·) can be used to target a
drug or advertisement to the subpopulation where it will have the largest impact.

In recent years, causal inference researchers have proposed dozens of methods that adapt
machine learning algorithms so that they can be used to estimate CATE functions from ex-
perimental data. For example, random forests, gradient boosting, and deep neural networks
have all been repurposed for this task [Wager and Athey, 2018, Powers et al., 2017, Johansson
et al., 2016, Shalit et al., 2017]. Going further, several papers have proposed general-purpose
“meta-learning frameworks” that allow analysts to adapt any supervised learning algorithm
to estimate CATE functions [Künzel et al., 2019, Nie and Wager, 2017]. Today, fitting half
a dozen different CATE models is only a few hours of work for a skilled data analyst.

That being said, deciding which of these competing models to use on the problem at
hand remains challenging. Evidence from large-scale simulation studies and causal inference

∗Authors are listed in alphabetical order. We thank Kevin Guo for helpful discussions.
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competitions show that no single method performs the best in every problem [Künzel et al.,
2019, Schuler et al., 2018, Dorie et al., 2019]. Unfortunately, standard model selection tech-
niques from supervised learning cannot be applied to solve this problem, since individualized
treatment effects are unobservable.

To address this problem, several authors have proposed “causal” variants of cross-
validation which can be used for model selection [Alaa and Van Der Schaar, 2019, Schuler
et al., 2017]. In contrast, we propose a method that bypasses model selection entirely and
instead computes an ensemble of candidate models. For bounded outcomes, we show that
no validation-set-based model selection rule can (asymptotically) outperform our ensemble
model. This result holds even if the number of candidate models grows faster than the sam-
ple size, and we do not make any assumptions about the quality or correlation structure of
the candidate models. We assess the empirical performance of ensembling by applying our
method to 43 benchmark semi-synthetic datasets, and find that ensembling almost always
outperforms model selection. Our practical recommendation for data analysts estimating
CATE models is to fit a wide variety of diverse models, and then use ensembling rather than
model selection to obtain a CATE model for deployment.

2 Formal Problem Statement

2.1 The potential outcomes framework

We adopt potential outcomes model of causality introduced by Neyman and Rubin [Rubin,
2005]. In this model, we posit that, in addition to an individual’s observed features Xi ∈ X ,
he or she is endowed with two unobserved potential outcomes Y1i, Y0i ∈ R. Here, Y1i is the
outcome we would observe if individual i were assigned to the “treatment” condition, and
Y0i is the outcome we would observe if individual i were assigned to the “control” condition.
The treatment effect for individual i is defined as the contrast between these two potential
outcomes, τi = Y1i − Y0i. Since only one of the two potential outcomes can be observed for
any individual, τi is unobservable.

2.2 Assumptions on the randomized experiment

In this paper, we focus on randomized experiments. We do so because of two reasons. First,
randomized experiments are ubiquitous in applications. Thousands of A/B tests are being
performed in technology companies every day and randomized controlled trials are the gold
standard in medical applications. Learning a better model for treatment effects leads to
better personalization. Second, estimation from observational data typically relies on much
stronger, unverifiable assumptions. It is our goal in this paper to minimize assumptions and
keep things simple.

We assume that the analyst has access to n samples from a randomized experiment that
was performed in the following fashion:

1. Participants in the experiment were sampled i.i.d. from the population of interest, i.e.
(Xi, Y1i, Y0i) ∼ P independently for each i ∈ [n].

2. Independently of {(Xi, Y1i, Y0i)}ni=1, treatment assignments (Z1, · · · , Zn) ∈ {0, 1}n
were sampled from either a Bernoulli design or a Completely Randomized design.
In a Bernoulli design, P(Zi = 1) = p independently across i ∈ [n]. In a completely
randomized design, the vector (Z1, · · · , Zn) is sampled uniformly from the set of binary
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vectors with sum pn. In our notation, Zi = 1 indicates that participant i was assigned
to the “treatment” condition, and Zi = 0 indicates that participant i was assigned to
the “control” condition.

3. The observed outcome is Yi = ZiY1i + (1− Zi)Y0i. The final dataset available to the
analyst is {(Xi, Yi, Zi)}ni=1.

2.3 The estimation problem

We study the problem of estimating the conditional average treatment effect function τ(·),
which can be defined as:

τ(x) := E[Y1i − Y0i|Xi = x] = E[τi|Xi = x] (1)

Under the experimental assumptions stated above, the function τ(·) is identified (up to
P-almost sure equivalence).

We assume that the analyst has a library of K candidate algorithms for estimating
τ(·), where each algorithm Ak maps a dataset {(Xi, Yi, Zi)} (of any size, not necessarily
n) to an estimated CATE function τ̂k : X → R. The estimation problem is to use these
algorithms {Ak}Kk=1 to construct a single function τ̂s(·) that is close to the true CATE
function τ(·). We will measure the accuracy of an estimator τ̂(·) using its L2(PX) distance
to τ(·), ||τ̂ − τ ||2 =

√
E[(τ̂(Xnew)− τ(Xnew))2]. This is the most commonly used accuracy

measure in the literature on heterogeneous treatment effect estimation, and is called the
precision in estimating heterogeneous effects by Hill [Hill, 2011].

3 Our Proposal

3.1 The causal stacking algorithm

Our proposal, which we call causal stacking, can be simply stated. First, split the data
into a training and an averaging set. Then, use the CATE algorithms Ak to learn estimated
CATE models τ̂k(·) on the training set. Finally, use the averaging set to find a weight vector
ŵ such that τs = ŵ>τ̂1:K minimizes an estimate of ||τ̂s − τ ||22. A more complete description
of the method is given in Algorithm 11.

3.2 Practical recommendations

We have a few practical recommendations regarding the use of Algorithm 1. We will further
elaborate in section 6.

• Number of Candidate Models. Causal stacking gives more gains when we have
larger number of candidate models. For best performance, we recommend trying a
wide variety of machine-learning algorithms and meta-learning frameworks.

• Prediction models. Although the theoretical guarantees on the causal stacking
algorithm do not rely on the correctness or consistency of the models µ̂1 and µ̂0,
we have found that Algorithm 1 performs better when these models have low out-of-
sample MSE. There are two standard approaches to fitting regression models in causal

1The non-negativity constraint and `1 constraint are for interpretability and help in theoretical analysis.
We consider extensions in empirical study section
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Algorithm 1 Causal stacking

1: Input: Data {(Xi, Yi, Zi)}ni=1, CATE algorithms {Ak}Kk=1.
2: Partition the data into a training set Strain containing 100(1 − α)% of the data and

an averaging set Savg containing 100α% of the data. If the experimental design was
Bernoulli, the partition can be random. If the experimental design was Completely
Randomized, the fraction of treated units in the averaging set should be p.

3: for t ∈ {0, 1} do
4: Using the data in Strain, fit a regression model µ̂t that predicts Yti using Xi, i.e. µ̂t

is an estimate of E[Yi|Xi,Wi = t]
5: end for
6: for all k ∈ [K] do
7: Set τ̂k ← Ak(Strain).
8: end for
9: Solve the optimization problem

ŵ = argmin
w�0,||w||1=1

1

|Savg|
∑

i∈Savg

(τ̂i − w>τ̂1:K(Xi))
2 (2)

where τ̂i is defined by:

τ̂i = [µ̂1(Xi)− µ̂0(Xi)]

+
[Yi − µ̂1(Xi)]Zi

p
− [Yi − µ̂0(Xi)](1− Zi)

1− p
(3)

10: Output: τ̂s(·) = ŵ>τ̂1:K(·).

inference: (i) use only data from treated units to fit µ̂1 and only data from control
units to fit µ̂0; (ii) fit a single model µ̂(Zi, Xi) using all the data in Strain, then set
µ̂1(Xi) = µ̂(1, Xi) and µ̂0(Xi) = µ̂(0, Xi). We have found that these approaches work
well on different datasets, so it is worthwhile to try both and choose the approach
with smaller error in cross-validation.

• Refitting on the entire dataset. After computing the weight vector ŵ, one might
be tempted to refit the algorithms {Ak} on the entire dataset of n samples to construct
estimated CATE models {τ̂∗k} which are then averaged using the first-stage weights.
The resulting CATE model τ̂∗s (·) = ŵ>τ̂∗1:K would then be deployed. Although this
approach sounds like it is more sample-efficient, τ̂∗s is not guaranteed to perform better
than τ̂s. CATE models based on trees or neural networks can be quite sensitive
to the input dataset and the parameter initialization, so Ak(Strain) may bear little
resemblance to Ak(Strain ∪ Savg).

4 Related Work

In supervised learning problems, it is well-known that model averaging could outperform
model selection [Wolpert, 1992]. For example, all of the top submissions in the “Netflix
Prize” competition used extensive ensembling [Bell and Koren, 2007], and model averaging
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is now considered essential to achieve competitive performance in Kaggle tournaments.
Recently, model averaging methods have also made their way into causal inference algo-

rithms, although usually only to optimize a regression model, a propensity score model, or
a forecast. For example, in the panel data context, Athey et al. [2019] propose using model
ensembling to improve predictions of potential outcomes. In the causal inference competi-
tion of Dorie et al. [2019], several top-performing submissions used some form of ensembling
to optimize potential outcome models, notably the Super Learner + tMLE proposal based
on van der Laan et al. [2007] and van der Laan [2010].

The only prior work which we are aware of that proposes stacking for CATE function
estimation is Nie & Wager [Nie and Wager, 2017], where one of the state of art CATE
models R-learner is introduced. Their proposal for stacking is based on the decomposition
which inspires the R-learner and is quite similar to ours2, but they use the loss function (4)
in place of the loss function (2) and optimize over all nonnegative weight vectors, not just
those constrained to sum to one. We call this method R-Stacking.

R(w) =
∑

i∈Savg

[Yi − µ̂(Xi)− (Zi − p)(w>τ̂1:K(Xi))]
2 (4)

In (4), µ̂ is any regression function that predicts Yi using Xi. In balanced experiments
(p = 0.5), noting that (Zi− p)2 is indeed a constant, it is straightforward to show that R(·)
is equivalent (up to a constant scaling) to our stacking loss function (2) with µ̂1 ≡ µ̂0 ≡ µ̂.
We give a thorough comparison of causal stacking and R-Stacking in Section 6.

The stacking loss function (2) in Algorithm 1 is simply a feasible approximation of the
“idealized” validation-set estimate of ||τ̂s − τ ||22, which would be

1

|Savg|
∑

i∈Savg

(τi − τ̂s(Xi))
2 (5)

Since τi is unobservable, we plug in an estimate τ̂i. The estimate τ̂i that we use was proposed
in Aronow and Middleton [2013] and shown to be unbiased for τ(Xi) under any choice of the
regression functions µ̂0 and µ̂1. This estimator is closely related to the AIPW/doubly-robust
estimator from the literature on observational studies. The idea of using a plug-in estimator
to approximate the idealized validation set procedure has appeared before in the literature
on CATE model selection. For example, Saito and Yasui [2019] and Gutierrez and Gérardy
[2017a] explore this approach with specific choices of µ̂0 and µ̂1. Rolling and Yang [2014]
study (5) using a matching-based estimator of τi. Alaa and Van Der Schaar [2019] propose
a perturbation of the plug-in estimate based on influence functions from semiparametric
efficiency theory. On the theoretical side, the analysis in van der Laan and Dudoit [2003]
shows that – under certain technical conditions – minimizing the plug-in validation estimate
is a consistent model selection rule.

5 Theoretical Analysis

In this section, we will state a result saying that – for bounded outcomes – replacing the av-
eraging step of Algorithm 1 by any model selection rule cannot (asymptotically) lead to an
improvement, even if the number of candidate models K grows sub-exponentially with the

2We are describing a slightly simplified version of the proposal of Nie & Wager which uses only a single
split of the data.
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sample size n. The proof is simple, and is based on classical results on the assumption-free
risk-consistency of `1-constrained functional aggregation [Juditsky and Nemirovski, 2000,
Greenshtein and Ritov, 2004].

Proposition 1. (Finite-sample bound)
Assume that Y0i, Y1i, τ̂k, µ̂1, and µ̂0 are all uniformly bounded by a constant L. Then, with
probability at least 1− δ, the output τ̂s of the causal stacking algorithm satisfies:

||τ̂s − τ ||22 ≤ min
k∈[K]

||τ̂k − τ ||22 + 12L2

√
log([K + 1]2/δ)

αn

Corollary 2. (Asymptotic implication)
Assume that Y0i, Y1i, τ̂k, µ̂1 and µ̂0 are uniformly bounded. Assume that the number of
candidate models Kn grows sub-exponentially with n. Then if τ̂k∗ ∈ {τ̂1, · · · , τ̂K} is the
model selected by any model selection rule, we have the asymptotic result:

max{0, ||τ̂s − τ ||22 − ||τ̂k∗ − τ ||22}
p−→ 0 (6)

In other words, no model selection algorithm based on a validation set can asymptotically
outperform ensembling.

The proofs may be found in the supplementary material. We will make a few remarks
about both the assumptions and the conclusions of Proposition 1 and Corollary 2.

• The condition that the regression models µ̂1, µ̂0 and candidate CATE models τ̂k are
bounded imposes no restriction beyond boundedness of the potential outcomes, since
one can always truncate these models to produce a new regression/CATE models which
satisfy the boundedness assumption and are at least as accurate as the originals.

• The result (6) is most interesting when mink ||τ̂k − τ ||22 does not tend to zero, i.e. the
true CATE function is so complex that no candidate model is consistent. We doubt
that any CATE algorithm can achieve vanishingly small error in any real problem
with more than a handful of covariates. Standard results from statistical minimax
theory show that no CATE algorithm Ak can achieve (worst-case) error better than
O(n−1/2) without extremely strong continuity assumptions on τ(·) unless dim(X )
is very small3. This means that, in high-dimensional problems with only moderate
smoothness, using τ̂s instead of the best candidate model does not degrade the worst-
case rate of convergence.

• Ideally, we would also like to claim that causal stacking is competitive with the best
algorithm fit on the entire training dataset, whereas Proposition 1 only compares it
to the best model fit on a Strain. However, without imposing further assumptions on
the algorithms A1, · · · ,AK , it is not possible to prove any such result. The output of
Ak on a dataset of n samples need not be related in any way to the output of Ak on
a dataset with αn samples.

3Estimating a CATE function is at least as hard as nonparametric regression, since a double (Xi, Yi)
can always be augmented into a triple (Xi, 0, Y1i). The problem of recovering the regression function from
the original data is the same as the problem of recovering the CATE function from the augmented data.
Standard results on minimax estimation over nonparametric function classes can then be applied to derive
the stated lower bound, c.f. Tsybakov [2008].
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6 Empirical Study

We performed an extensive simulation study to assess the performance of causal stacking
relative to two other approaches:

1. Oracle model selection. The oracle model selection procedure selects among candidate
models by choosing the model that minimizes the idealized validation-set risk estimate
(7).

1

|Savg|
∑

i∈Savg

(τ(Xi)− τ̂k(Xi))
2 (7)

In other words, this procedure has oracle knowledge of the true CATE values on the
validation set in the model selection step.

2. R-Stacking. The R-Stacking procedure proposed by Nie & Wager [Nie and Wager,
2017] optimizes the loss (4) over the class of nonnegative weight vectors. We use
XGBoost model to fit the regression function µ̂ in (4).

To facilitate a fair comparison with R-Stacking, we also used XGBoost models to fit the
regressions µ̂1 and µ̂0 required to implement Algorithm 1.

6.1 Datasets

We applied our method to all 43 “high-heterogeneity” datasets from the 2016 Atlantic
Causal Inference Competition [Dorie, 2016]. These semi-synthetic datasets use covariates
drawn from a subset of the Collaborative Perinatal Project, but potential outcomes Y1i, Y0i

and CATE functions τ(·) were generated synthetically. More detail on the construction
of these datasets can be found in Dorie et al. [2019]. We filtered out a small number of
unmanageable categorical features, leaving 52 covariates remaining.

For each dataset, we used 2000 observations for training CATE models and 1000 ob-
servations for averaging. The remaining 1802 observations were reserved as a test set for
evaluating the averaged models. In the training and validation data, the assignments Zi

were generated i.i.d. from a Bernoulli(p) distribution, and we considered p ∈ {0.1, 0.3, 0.5}.
Fifty replications were performed per dataset, with both the train/averaging/split and treat-
ment assignments being rerandomized across replications. Our final quality measure is the
average test MSE across the 50 replications.

6.2 Candidate models

In our simulations, we considered nine candidate CATE algorithms. These algorithms span
a variety of meta-learning “frameworks,” covering T-, S-, X-, and R-learning [Künzel et al.,
2019, Nie and Wager, 2017]. They also employ a variety of machine learning algorithms.

1. SVM S-learner. This method uses the training data to fit a single support vector
regression µ̂ making predictions Ŷi = µ̂(Zi, Xi). We used a Gaussian kernel in the
support vector regression. The fitted CATE function is defined by τ̂(x) = µ̂(1, x) −
µ̂(0, x).
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2. XGBoost T-learner. This method fits two gradient boosting models µ̂1 and µ̂0 using
data from treated and control units respectively. The fitted CATE function is τ̂(x) =
µ̂1(x)− µ̂0(x). We used 100 boosting iterations, and all other parameters were set at
their default values.

3. Random Forest T-learner. This is the same as the XGBoost T-learner, but the regres-
sion functions are fit using random forests. We used the default parameter settings in
the ranger implementation of random forests.

4. Regression tree S-learner. This is the same as the SVM S-learner, but µ̂ is fit using
CART.

5. Lasso T-learner. This is the same as the XGBoost T-learner, but the regression
functions are fit using Lasso. The `1-penalty parameters were chosen using 5-fold
cross-validation.

6. Random Forest X-learner. This method fits two regression models µ̂1 and µ̂0 in the
same way as the Random Forest T-learner. After fitting these models, individualized
treatment effects τ̂i are estimated for each unit by using the regression models to
impute the unobserved potential outcomes. Two new random forest models γ̂1 and γ̂0

are fit to predict τ̂i using Xi based on data from treated and control units, respectively.
The final CATE model is τ̂(x) = (1− p)γ̂1(x) + pγ̂0(x).

7. XGBoost R-learner. In this method, we first fit an XGBoost model µ̂ predicting Yi
using Xi. Then, we fit a separate XGBoost model τ̂ to minimize the weighted least-
squares objective (8).

∑
i∈Strain

(Zi − p)2

(
Yi − µ̂(Xi)

Zi − p
− τ̂(Xi)

)2

(8)

We used 100 boosting iterations for each model, and all other parameters were set at
their default values.

8. Lasso R-learner. This is the same as the XGBoost R-learner, except the models µ̂ and
τ̂ were fit using Lasso with 5-fold cross-validation to select the tuning parameter.

9. Constant. In this model, we set τ̂ to be the constant function that always predicts the
difference in mean outcomes between treated and control units in the training dataset.

6.3 Results

6.3.1 Causal stacking vs. oracle model selection

Our simulations suggested three main takeaways in the comparison between causal stacking
and oracle model selection:

1. Causal stacking outperforms overall.
In every setting of the treatment assignment probability (p = 0.1, 0.3, 0.5), causal stacking
outperformed oracle model selection on the vast majority of datasets in terms of average
mean-squared error on the test set. Table 1 summarizes these results.
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Figure 1: Causal stacking vs. oracle model selection in the balanced design (p = 0.5). The
% improvement in test-set MSE is defined as 1−MSEstacking/MSEoracle. In datasets 32 and
75, the decline in MSE is less than 3%.

Table 1: Causal stacking vs. oracle: % of datasets won

P(Zi = 1) Causal Stacking Oracle

0.1 81% 19%
0.3 91% 9%
0.5 95% 5%

2. Causal stacking shines in balanced experiments.
Figure 1 shows the percent improvement of causal stacking relative to oracle model selection
on all 43 datasets under the balanced design (p = 0.5). Causal stacking improves the MSE
by as much as 48%, and never degrades MSE by more than 3%.

3. No harm from superstars.
In our experiments, we found that a single CATE algorithm (Algorithm 2: XGBoost T-
learner) far outperformed its competition and was chosen by the oracle more often than all
other algorithms combined. For example, the model selection oracle picked the XGBoost T-
learner on over 95% of replications on dataset 5. Although this situation is often considered
to be unfavorable for ensemble methods, we did not find this to be the case. Figure 2 plots
the average weights chosen by causal stacking on dataset 5 for each of the nine candidate
CATE algorithms. Although the dominant model gets the bulk of the weight, contributions
from algorithms 3 – 6 helped causal stacking outperform the model selection oracle on this
dataset. We also performed all of our simulations without the dominant XGBoost T-learner
model, and found results essentially identical to those from Table 1.

6.3.2 Causal stacking vs. R-Stacking

Whether or not causal stacking performs better or R-stacking performs better is more con-
text dependent. Causal stacking outperformed R-stacking in many simulations, and R-
stacking outperformed causal stacking in many others. We have a few general pieces of
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Figure 2: The average causal stacking weights on dataset 5. Models 1, 7, 8, and 9 received
essentially zero weight, due to the sparsity properties of `1-constraints.

advice on how to choose between these two methods:

Table 2: Causal stacking vs. R-Stacking: % of datasets won

P(Zi = 1) Causal Stacking R-Stacking

0.10 35% 65%
0.30 60% 40%
0.50 60% 40%

1. Balanced designs favor causal stacking.
Table 2 shows the relative win rates of causal stacking vs. R-stacking across the three exper-
imental designs. Causal stacking does better in balanced experiments whereas R-stacking
does better in imbalanced experiments. This agrees with our intuition, since in balanced
experiments, R-stacking is (essentially) a special case of causal stacking with regression
models µ̂1 and µ̂0 constrained to be the same4. When there are enough samples in both the
treatment and control group to estimate different response functions, the added flexibility
can reduce bias. In imbalanced experiments, one of the two regression functions is fitted
using a relatively small sample, and the added variance may harm performance. In addi-
tion, the weights 1/p are larger if p is small, so the loss function has higher variance, which
degrades the performance of causal stacking.

2. With worse-performing candidate models, R-stacking is preferred.
In our experiments without the dominant XGBoost T-learner model, the R-stacking proce-
dure performed better than causal stacking (in terms of percent of datasets won) even in
balanced experiments. We speculate that this may be due to the capacity control induced
by the additional constraint in causal stacking that weights sum to one. With a weaker
library of models, greater flexibility may be needed to fit the underlying CATE function.
Figure 3 shows the average weights of both causal stacking and R-stacking on dataset 5
without Algorithm 2; a noticeable feature is that the R-stacking procedure uses weights
with sum far exceeding one. This extra capacity also allows the R-stacking procedure to
employ five candidate models, whereas causal stacking only uses three. In fact, as our next
set of experiments show, removing the constraint generally improves the performance in

4The R-stacking procedure uses conic combinations instead of convex combinations.
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more balanced designs.

Figure 3: Causal stacking vs. R-stacking weights (red) on dataset 5, without algorithm 2.
The R-stacking model takes advantage of its extra capacity and chooses weights with total
sum substantially exceeding one.

6.3.3 Causal stacking vs. Other variants

One may consider some other variants of Algorithm 1. An immediate idea is to remove either
one of the constraints or all constraints in (2). In our experiments, we found that removing
the `1 constraint actually improves the performance in more balanced designs. Table 3
summarizes the results. We see that in more balanced experiments removing the constraint
has a significant improvement. Also, removing both the `1 constraint and the nonnegative
constraint is unstable in our experiments due to co-linearity caused by similarities between
some of the models. However, we do see improvements in datasets that do not have the
numerical issue.

Table 3: Causal stacking vs. Causal Stacking (no `1 constraint): % of datasets won

P(Zi = 1) Causal Stacking no `1 constraint

0.10 58% 42%
0.30 37% 63%
0.50 26% 74%

Table 4: Causal Stacking (no `1 constraint) vs. R-Stacking: % of datasets won

P(Zi = 1) no `1 constraint R-stacking

0.10 35% 65%
0.30 77% 23%
0.50 84% 16%

Table 4 shows the comparison between causal stacking without `1 constraint with R-
stacking. We see that removing `1 constraint makes causal stacking beat R-stacking more
often in more balanced designs and still suffer from added variance of fitting two regression
functions as explained in the comparison between causal stacking and R-stacking.
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6.3.4 Elaboration on recommendations

Finally, we elaborate on recommendations we gave previously. First, we consider dropping
those models that are seldom selected in causal stacking, i.e. we only consider models that
are selected quite often. In our experiments, XGBoost T-learner, Random Forest T-learner
and Regression tree S-learner are three dominant models. We performed causal stacking
with only these three models and compared it with the causal stacking with all nine models.
Table 5 shows the results. It is clear from the table that though the other six models were
selected only a few times, they do play a role and make the performance better in every
setting of the treatment assignment probability we consider.

Table 5: Causal Stacking vs. Causal Stacking (only model 2, 3 and 4): % of datasets won

P(Zi = 1) All Models Only Model 2, 3, 4

0.10 72% 28%
0.30 65% 35%
0.50 63% 37%

Second, the quality of two regression models used in (3) matters. We compared causal
stacking that uses XGBoost to predict {µt}t=0,1 with causal stacking that uses linear model
to predict {µt}t=0,1. In our experiments, we found that the latter one significantly degrades
the performance. Table 6 summarizes the results.

Table 6: Causal Stacking (XGBoost µ̂t) vs. Causal Stacking (linear µ̂t): % of datasets won

P(Zi = 1) XGBoost µ̂t Linear µ̂t

0.10 81% 19%
0.30 93% 7%
0.50 95% 5%

7 Discussion

In Bell et al. [2007], the authors of the winning solution to the Netflix prize wrote:

Predictive accuracy is substantially improved when blending multiple predictors.
Our experience is that most efforts should be concentrated in deriving substan-
tially different approaches, rather than refining a single technique.

In our paper, we argued that the same wisdom can be applied to the problem of estimating
CATE functions. Specifically, we have the following practical recommendations for data
analysts working on this problem:

• When estimating CATE functions, it is better to fit a diverse array of candidate models
and then use model averaging (with either causal stacking or R-stacking) to combine
these models rather than to use a validation set to select a model.

• On the 43 datasets we studied, X-learner and T-learner were top performers. We
recommend that data analysts include these algorithms in their list of candidates.
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For future work, we would like to better understand which situations lead to causal stacking
performing better than R-learner stacking and vice versa. Although we provided some
speculation as to why the R-learner stacking procedure outperformed causal stacking when
the dominant XGBoost T-learner model was removed from consideration, we do not yet
have any rigorous understanding of this phenomenon. Other factors to explore include the
role of sample size and the number of candidate models K; when the sample size is small
or the library of candidate models K is large, we suspect that the extra capacity control
in causal stacking will help to control overfitting the validation set. Another interesting
direction for future work is to explore more sophisticated ensembling techniques, including
causal variants of boosting and bagging.
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A Proofs

A.1 Proof of Proposition 1

Proof. We will show the stronger result that the inequality holds even conditional on on the
training set Strain. Therefore, we may consider τ̂1, · · · , τ̂K , µ̂1 and µ̂0 to be fixed functions,
and all expectations in this proof will only be taken with respect to the randomness in Savg.

Define the function γ : RK → RK+1 by γ(w) = (1,−w). The stacking loss function ˆ̀(w)
can be written as:

ˆ̀(w) =
1

|Savg|
∑

i∈Savg

(τ̂i − w>τ̂1:K(Xi))
2 = γ(w)>

 1

|Savg|
∑

i∈Savg

τ̂0:K(Xi)τ̂0:K(Xi)
>


︸ ︷︷ ︸

:=Σ̂

γ(w)

where τ̂0:K(Xi) = (τ̂i, τ̂1(Xi), · · · , τ̂K(Xi)). Let Σ := E[Σ̂], and notice that the entries of Σ̂
are all sample averages of terms bounded in absolute value by L2. Therefore, Hoeffding’s
inequality and a union bound imply that:

P

(
max

1≤i,j≤K+1
|Σ̂ij −Σij | >

√
2L2

√
log([K + 1]2/δ)

|Savg|

)
≤ δ (9)
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On the complement of the event (9), the stacking loss ˆ̀(w) is close to its expectation

`(w) := E[ˆ̀(w)] simultaneously over the set ∆K := {w ∈ RK : w � 0, ||w||1 = 1}.

sup
w∈∆K

|ˆ̀(w)− `(w)| = sup
w∈∆K

|γ(w)>(Σ̂−Σ)γ(w)|

≤
(

sup
w∈∆K

||γ(w)||21
)(

max
1≤i,j≤K+1

|Σ̂−Σ|
)

≤ 4
√

2L2

√
log([K + 1]2/δ)

|Savg|

This implies that `(ŵ) is not much larger than `(wopt), where wopt := argmin
w∈∆K

`(w).

`(ŵ) ≤ ˆ̀(ŵ) + |`(ŵ)− ˆ̀(ŵ)|

≤ ˆ̀(wopt) + |`(ŵ)− ˆ̀(ŵ)|

≤ `(wopt) + |`(wopt)− ˆ̀(wopt)|+ |`(ŵ)− ˆ̀(ŵ)|

≤ `(wopt) + 8
√

2L2

√
log([K + 1]2/δ)

|Savg|
(10)

To finish the proof, we will use the fact that `(w) = ||w>τ̂1:K − τ ||22 + Var(τ̂i) for any w. We
can see this by first decomposing `(w) into three terms:

`(w) = E

 1

|Savg|
∑

i∈Savg

(τ̂i − w>τ̂1:K(Xi))
2


= E[E

[
(τ̂i − w>τ̂1:K(Xi))

2|Xi

]
]

= E[E[(τ̂i − τ(Xi))
2 + (τ(Xi)− w>τ̂1:K(Xi))

2 − 2(τ̂i − τ(Xi))(τ(Xi)− w>τ̂1:K(Xi))|Xi]]

= E[E[(τ̂i − τ(Xi))
2|Xi]]︸ ︷︷ ︸

(i)

+ ||τ − w>τ̂1:K ||22︸ ︷︷ ︸
(ii)

− 2E[(τ(Xi)− w>τ̂1:K(Xi))E[(τ̂i − τ(Xi))|Xi]]︸ ︷︷ ︸
(iii)

Conditional on Xi, τ̂i is unbiased for τ(Xi):

E[τ̂i|Xi] = [µ̂1(Xi)− µ̂0(Xi)] + E
[

(Yi − µ̂1(Xi))Zi

p

∣∣∣∣Xi

]
− E

[
(Yi − µ̂0)(1− Zi)

1− p

∣∣∣∣Xi

]
= [µ̂1(Xi)− µ̂0(Xi)] + E[Y1i − µ̂1(Xi)|Xi]E

[
Zi

p

]
− EE[Y0i − µ̂0(Xi)|Xi]E

[
1− Zi

1− p

∣∣∣∣Xi

]
= E[Y1i − Y0i|Xi]

= τ(Xi)

Therefore, the term (iii) vanishes and the term (i) simplifies to Var(τ̂i) by the law of total
variance. This establishes the identity `(w) = ||w>τ̂1:K−τ ||22+Var(τ̂i), which can be applied
on both sides of (10) to obtain the final result.
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